Chapter 10

Tangents to a circle

Tangent to a circle is a line which intersects the circle in exactly one point.

At a point of a circle there is one and only one tangent.
The tangent at any point of a circle is perpendicular to the radius through the point of contact.

The lengths of tangents drawn from an external point to a circle are equal.
Centre of the circle lies on the bisector of the angle between the two tangents.
Theorem 1:- If two chords of a circle intersect inside or outside the circle, then the rectangle formed by the two parts of one chord is equal in area to the rectangle formed by the two parts of the other.

Given:- Two chords AB and CD of a circle such that they intersect each other at a point P lying inside in figure (i) or outside in figure (ii) of the circle.

To prove: - PA.PB = PC.PD
Construction:-AC and BD are joine P.
Proof:-

Case - (1) in figure (i) P lies inside the circle
In $\triangle^{S} P C A$ and $P B D$, we have
$\angle P C A=\angle P B D$ [Angles in jthe same segment]
$\angle A P C=\angle B P D$ [vertically opposite angles]
$\therefore \triangle P C A \sim \triangle P B D$ (AA similarity)
Case- (2) In figure (ii) P lies outside the circle

$$
\angle P A C+\angle C A B=180^{\circ} \text { (limear pair) }
$$

and $\angle C A B+\angle P D B=180^{\circ}$ (opposite angles of acyclicq and)
$\therefore \angle P A C=\angle P D B$
In $\triangle^{s} P C A$ and $P B D$
$\angle P A C=\angle P D B$ [Proved above]
$\angle A P C=\angle D P B$ [Common]
$\therefore \triangle P C A \sim \triangle P B D$ (AA similarity)
Hence, in either case,

$$
\frac{P A}{P B}=\frac{P C}{P B}
$$

Or, PA.PB $=$ PC. $P D$
Theorem 2. If PAB is a secant to a circle intersecting it at A and B and PT is a tangent then PA. $\mathrm{PB}=\mathrm{PT}^{2}$.

Given: - PAB is secant intersecting the circle with centre O at A and B and a tangent PT at T .

To Prove: - $\mathrm{PA} . \mathrm{PB}=\mathrm{PT}^{2}$
Construction: - $O M \perp A B$ is drawn OA, OP and OT are joined.
Proof: - $\quad \mathrm{PA}=\mathrm{PM}-\mathrm{AM}$

$$
\begin{aligned}
\mathrm{PB} & =\mathrm{PM}+\mathrm{MB} \\
& =P M=A M \quad(\therefore A M=M B)
\end{aligned}
$$

$$
\therefore P A P B=(P M-A M) \cdot(P M+A M)
$$

$$
=P M^{2}-A M^{2}
$$

Also $O M \perp A B$
$\therefore \mathrm{PM}^{2}=\mathrm{OP}^{2}-\mathrm{OM}^{2}$ [Pythagoras theo.]
and $\mathrm{AM}^{2}=\mathrm{OA}^{2}-\mathrm{OM}^{2}$ [Pythagoras theo.]

$$
\begin{aligned}
\therefore P A P B & =P M^{2}-A M^{2} \\
& =\left(O P^{2}-O M^{2}\right)-\left(O A^{2}-O M^{2}\right) \\
& =O P^{2}-O M^{2}-O A^{2}+O M^{2} \\
& =O P^{2}-O A^{2}
\end{aligned}
$$

$$
=O P^{2}-O T^{2} \quad[\because O A=O T \text { radii }]
$$

PA.PB $=\mathrm{PT}^{2}$ [Pythagoras theo.]
Example 1. In figure, chords AB and CD of the circle intersect at $\mathrm{O} . \mathrm{OA}=5 \mathrm{~cm}, \mathrm{OB}=$ 3 cm and $\mathrm{OC}=2.5 \mathrm{~cm}$. Find OD.

Solutions: - Chords AB and CD of the circle intersect at O
$\therefore O A \times O B=O C \times O D$
Or, $\quad 5 \times 3=2.5 \times O D$
Or, $\quad O D=\frac{2 \times 3}{2.5}=6 \mathrm{~cm}$

Example 2. In figure. Chords AB and CD intersect at P .

If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}$ and $\mathrm{PD}=4 \mathrm{~cm}$. Find the length of CD .
Solution:- PA $=5+3=8 \mathrm{~cm}$
$\mathrm{PA} X \mathrm{~PB}=\mathrm{PC} X \mathrm{PD}$
Or, $8 \times 3=$ PC X 4
Or, $\mathrm{PC}=8 \times 3 / 4=6 \mathrm{~cm}$
$\therefore \mathrm{CD}=\mathrm{PC}-\mathrm{PD}$
$=6-4$
$=2 \mathrm{~cm}$

Example 3. In the figure, ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. A circle through B touches the side $A C$ at D and intersect the side $A B$ at P. If D is the midpoint of side $A C$, Then $A B=4 A P$.

Solution:- $\mathrm{AP} \mathrm{X} \mathrm{AB}=\mathrm{AD}^{2}=(1 / 2 \mathrm{AC})^{2}$

$$
\begin{aligned}
& \mathrm{AP} \mathrm{XAB}=1 / 4 \mathrm{AC}^{2}[\mathrm{AD}=1 / 2 \mathrm{AC}] \\
& \text { Or, } 4 \mathrm{AP} . \mathrm{AB}=\mathrm{AC}^{2}[\mathrm{AC}=\mathrm{AB}] \\
& \text { Or, } 4 \mathrm{AP} . \mathrm{AB}=\mathrm{AB}^{2}
\end{aligned}
$$

$$
\text { Or, } 4 \mathrm{AP}=\mathrm{AB}
$$

Example 4. In the figure. Find the value of AB Where $\mathrm{PT}=5 \mathrm{~cm}$ and $\mathrm{PA}=4 \mathrm{~cm}$.

Solution:- $\mathrm{PT}^{2}=$ PA X PB (Theory.2)

$$
\begin{aligned}
& 5^{2}=4 \mathrm{X} \mathrm{~PB} \\
& \mathrm{~PB}=25 / 4=6.25 \\
& \mathrm{AB}=\mathrm{PB}-\mathrm{PA} \\
& \mathrm{AB}=6.25-4 \\
& \mathrm{AB}=2.25 \mathrm{~cm}
\end{aligned}
$$

Exercise - 20

1. In the given figure, a circle touches all the four sides of a quadrilateral $A B C D$ whose sides are $A B=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CD}=4 \mathrm{~cm}$. Find AD .

2. In figure. 1 and m are two parallel tangents at A and B. The tangent at C makes an intercept DE between the tangent 1 and m . Prove that $\angle D F E=90^{\circ}$.

3. If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.
4. In figure, a circle is inscribed in a $\triangle A B C$ having sides $A B=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and AC $=10 \mathrm{~cm}$. Find AD, BE and CF.

5. A circle is touching the side BC of a $\triangle A B C$ at P and is touching AB and AC when produced at Q and R . Prove that $\mathrm{AQ}=1 / 2($ Perimeter of $\triangle A B C)$
6. In figure. Two circles intersects each other at A and B. the common chord $A B$ is produced to meet the common tangent PQ to the circle at D . Prove that $\mathrm{DP}=\mathrm{DQ}$.

7. In figure. XP and XQ are two tangents to a circle with centre O from a point X out side the circle. ARB is a tangent to the circle at R. prove that $X A+A R=X B+B R$.

8. A circle touches all the four sides a quadrilateral ABCD . Prove that the angles subtended at the centre of the circle by the opposite sides are supplementary.
9. If PA and PB are two tangents drawn from a point P to a circle with centre O touching it at A and B , prove that OP is the perpendicular perpendicular bisector of AB .

Answers

1. 3 cm
2. $\mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}$

Theorem 3. If a line touches a circle and from the point of contact a chord is drawn, the angle which this chord makes with the given line are equal respectively to the angles formed in the corresponding alternate segments.

Given:- PQ is a tangent to circle with centre O at a point A, AB is a chord and C, D are points in the two segments of the circle formed by the chord $A B$.

To Prove:- (i) $\angle B A Q=\angle A C B$
(ii) $\angle B A P=\angle A D B$

Construction:- A diameter AOE is drawn. BE is joined.
Proof: - In $\triangle A B E$

$$
\begin{aligned}
& \angle A B E=90^{\circ} \quad[\text { Angleis a semicircle } \\
& \therefore \angle A E B+\angle B A E=90^{\circ} \\
& \angle B A E+\angle B A Q=\angle E A Q=90^{\circ} \quad[E A \perp P Q] \\
& \therefore A E B+\angle B A E=\angle B A E+\angle B A Q \\
& \angle A E B=\angle B A Q
\end{aligned}
$$

From Theorem 3,

$$
\begin{aligned}
\angle A C B & =\angle A E B \\
\therefore \angle B A Q & =\angle A C B
\end{aligned}
$$

$$
\text { Again } \angle B A Q+\angle B A P=180^{\circ} \quad \text { [Linear Pair] }
$$

$$
\text { and } \angle A C B+\angle A D B=180^{\circ} \quad \text { [Opposite angles of a cyclicquad] }
$$

$$
\therefore \angle B A Q+\angle B A P=\angle A C B+\angle A D B
$$

$$
\angle B A P=\angle A D B \quad[\therefore \angle B A Q=\angle A C B]
$$

Theorem 4. If a line is drawn through an end point of a chord of a circle so that the angle formed by it with the chord is equal to the angle subtend by chord in the alternate segment, then the line is a tangent to the circle.

Given:- A chord AB of a circle and a line PAQ. Such that $\angle B A Q=\angle A C B$ where c is any point in the alternate segment ACB.

To Prove:- PAQ is a tangent to the circle.
Construction:- Let PAQ is not a tangent then let us draw $\mathrm{P}^{\prime} \mathrm{AQ}$ ' another tangent at A .
Proof: - AS P 'AQ' is tangent at A and AB is any chord

$$
\begin{aligned}
& \therefore \angle B A Q^{\prime}=\angle A C B \\
& \text { [theo.3] } \\
& \text { But } \therefore \angle B A Q^{\prime}=\angle A C B \text { (given) }
\end{aligned}
$$

$$
\therefore \angle B A Q^{\prime}=\angle B A Q
$$

Hence $A Q$ ' and $A Q$ are the same line i.e. $P^{\prime} A Q '$ and $P A Q$ are the same line.
Hence PAQ is a tangent to the circle at A.
Theorem 5. If two circles touch each other internally or externally, the point of contact lie on the line joining their centres.

Given:- Two circles with centres O_{1} and O_{2} touch internally in figure (i) and externally in figure (ii) at A.

To prove: - The points $\mathrm{O}_{1}, \mathrm{O}_{2}$ and A lie on the same line.
Construction:- A common tangent PQ is drawn at A .
Proof: - In figure (i) $\angle P A Q_{2}=\angle P A Q_{1}=90^{\circ}$ (PA is tangent to the two circles)
${ }^{\cdot} \mathrm{O}_{1}, \mathrm{O}_{2}$ and A are collinear.
In figure (ii) $\angle P A O_{1}=\angle P A O_{2}=90^{\circ}$ (PA is tangent to the circles)

$$
\begin{aligned}
\therefore \angle P A Q_{1}+\angle P A Q_{2} & =90^{\circ}+90^{\circ} \\
& =180^{\circ}
\end{aligned}
$$

i.e. $\therefore \angle P A O_{1}$ and $\angle P A O_{2}$ from a linear pair
$\therefore \mathrm{O}_{1}, \mathrm{O}_{2}$ and A lie on the same line.
Example 5. In the given figure TAS is a tangent to the circle, with centre O, at the point A. If $\angle O B A=32^{\circ}$, find the value of x and y .

Solution:- ${ }^{\text {In }} \triangle O B A, O A=O B$
(radii)

$$
\therefore \quad \begin{aligned}
\angle O A B & =\angle O B A \\
& =32^{\circ}
\end{aligned}
$$

Now TAS is tangent at A
$\therefore O A \perp T A S$
$\therefore \angle O A B+x=90^{\circ}$
Or, $32^{\circ}+x=90^{\circ}$
$\therefore x=58^{\circ}$
$\angle x=\angle y \quad$ [Angles in the alternateseg]

$$
\angle x=\angle y=58^{\circ}
$$

Example 6. In the given figure. $\angle C$ is right angle of $\triangle A B C$, A semicircle is drawn on AB as diameter. P is any point on AC produced. When joined, BP meets the semi-circle in point D .
Prove that: $\mathrm{AB}^{2}=\mathrm{AC} \cdot \mathrm{AP}+\mathrm{BD} \cdot \mathrm{BP}$.

Solution:-

$$
\begin{aligned}
& \angle A C B=90^{0} \\
& \therefore \quad \angle B C P=90^{0} \\
& \text { In } \begin{aligned}
& \triangle A B C \\
& A C^{2}=B P^{2}-C P^{2} \\
&=A C^{2}+B C^{2} \\
&=A C^{2}+B P^{2}-C P^{2} \\
&=A C^{2}-C P^{2}+B P^{2} \\
&=(A C-C P)(A C+C P)+B P^{2} \\
&=(A C-C P) \cdot A P+B P^{2} \\
&=A P \cdot A C-A P \cdot C P+B P^{2} \\
&=A P \cdot A C+B P^{2}-A P \cdot C P \\
&=A P \cdot A C+B P^{2}-B P \cdot P D \\
&=A P \cdot A C+B P \cdot B P-P D) \\
&=A P \cdot A C+B P \cdot B D \\
& \therefore A B^{2}=A P \cdot A C+B P \cdot B D
\end{aligned}
\end{aligned}
$$

Exercise - 21

1. Two circles intersect at A and B. From a point P on one of these circles, two lines segments PAC and PBD are drawn intersecting the other circles at C and D respectively. Prove that $C D$ is parallel to the tangent at P.
2. Two circles intersect in points P and Q. A secant passing through P intersects the circles at A an B respectively. Tangents to the circles at A and B intersects at T. Prove that A, Q, T and B are concyclic.
3. In the given figure. PT is a tangent and PAB is a secant to a circle. If the bisector of $\angle A T B$ intersect AB in M, Prove that: (i) $P M T=\angle P T M$ (ii) $\mathrm{PT}=\mathrm{PM}$

4. In the adjoining figure, ABCD is a cyclic quadrilateral. AC is a diameter of the circle. MN is tangent to the circle at $\mathrm{D}, \angle C A D=40^{\circ}, \angle A C B=55^{\circ}$. Determine $\angle A D M$ and $\angle B A D$.

5. If $\triangle A B C$ is isosceles with $\mathrm{AB}=\mathrm{AC}$, Prove that the tangent at A to the circumcircle of $\triangle A B C$ is parallel to $B C$.
6. The diagonals of a parallelo gram ABCD intersect at E . Show that the circumcircles of $\triangle A D E$ and $\triangle B C E$ touch each other at E .
7. A circle is drawn with diameter AB interacting the hypotenuse AC of right triangle ABC at the point P . Show that the tangent to the circle at P bisects the side BC .
[^0]Answers

[^0]: 4. $50^{0}, 75^{0}$
