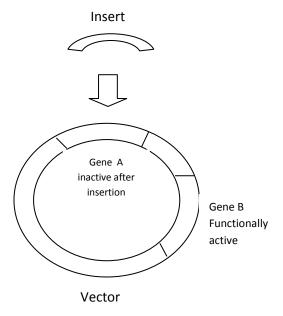
Paper Biotechnology 99/0


Marking Scheme

1.	Grow in solution, no adherence to vessel; e.g. blood cells.	^{1/2} + ^{1/2}
2.	Taxus species; anti carcinogenic.	1/2 + 1/2
3.	Used as antifoaming agent to prevent denaturation	^{1/2} + ^{1/2}
4.	A stationary phase culture has stopped growing.	1
5.	$T_{d} = 0.693/\mu$	1
6.	Matrix assisted laser desorption and Ionisation. Proteins are vo	olatalised
	and ionised for analysis of their molecular masses (m/z ratio).	$1/2 + 1^{1/2}$
7.	Algorithm based on known training sets, inaccurate. Reason: o	verlapping
	genes/splice variants. Pg 61	2
8.	Any one from book (Pg 122-130)	
	Bt Cotton- pest resistance/ canola, soyabean, corn, cotton- her	bicide
	tolerant/ papaya etc virus resistant.	2
9.	cDNA for expressed genes; gDNA for all genome sequences.	1 + 1
10	. To store novel strains/species for repository.	1
	MTCC Chandigarh, NBAIM (Mau, UP)	1
11	. Any two components from pg 110 such as -	
	Sucrose as Carbon source, ammonium salts as nitrogen source	, vitamins,
	hormones as growth regulators etc.	2
12	. Mortality of finite cultures; lack of adherence of continuous cu	ıltures etc.
	pg 137-138 (any two).	2
13	. Protein engineering/ site directed mutagenesis.	1
	Application: subtilisin/ epitope micromanipulation (page 53)	1
14	. Vector selection is based on size of fragments, a 22 kb fragme	nt can be
	suitably cloned in phage based vector	1
	Host: Bacterium	1
15	. Generation of various parts of plants: roots, shoots.	2
16	. Any 3:	
	High production capacity/ ease of source material collection/ le	ow
	operational cost/ ease of production.	3
17	. To solve medico-legal cases.	1

Downloaded From: http://www.cbseportal.com

Principle: DNA from subject is isolated and restricted, followed by	
comparison of RFLPs to assess variations. Pg 7 + 8	2
18. Pg 91 for graph (fig. 6) and other details	3
19. pH- stability of protein	
less time- to prevent denaturation	1
agitation- causes instability in protein	1

20. Vector in which foreign DNA is inserted has genes A & B for different antibiotic resistance. Cloning into A causes insertional inactivation and hence, causes sensitivity to antibiotic A. Since gene B is functionally active hence resistance to B results.

OR

As on page 17 Principle based on insertional inactivation of lac Z gene on the vector (PUC 19) used. No insertional inactivation, ß- galactosidase expressed. ---- X-gal converted to blue product- therefore, blue colonies Insertional inactivation, ß- galactosidase not expressed ----- white colony. 3 1^{1/2} 21. 100mg/500ml; therefore 500X1000mg in 25X10⁵ ml or 2500L. 1^{1/2} For 50LX2 fermentors/week= 2500/ 100X4 = 6 months/25 wks. 22. Fusion of protoplasts results in intergenetic somatic hybrids. Benefits: to obtain hybrids with useful agronomic traits not normally found through sexual fertilisation. e.g. pomatoes, topatoes. 3 11/2 23. Animal cells require O₂ for energy (ATP production). $1^{1/2}$ Addition of microcarrier beads/roller culture bottles. 1 + 224. For better compression of data. B, H 1 + 2 25. Antigen epitope specific; e.g. OKT 3/ Herceptin etc 26. pg 45 for MS OR pg 36-38 for protein finger printing interpretation of results with respect to Sickle cell anaemia 4 + 127. Pg 67-69 **Principle** 2 Diagram 2 Interpretation 1 28. Sanger's dideoxy method pg 23-25 (fig 15) 3 + 2OR Description of Southern Hybridization; (Fig 10), Page 20