CHEM STRY MARKING SCHEME AN - 2013 SET - 56/1(AN)

Q no.	Ans wers	Marks
1	When concentration of each reactant is taken as unity.	1
2	$Na_3 PQ_1 > K_2 SQ_1 > Na C$	1
3	ОF	1
4	$4 \text{ H}_3 \text{ PQ}$ heat $3 \text{ H}_3 \text{ PQ}_1 + \text{PH}_3$	1
5	K ₄ [Fe(CN) ₆]	1
6	Add Lucas reagent (conc. HCl + Anhyd. ZnCl ₂) to both the alcohols separately. Turbidity will be produced in mediately in case of 2-methyl propan-2-ol	1
7	2- met hyl cycl opent-3- ene carboxylic acid/ for any other attempt give full marks.	1
8	G ycogen	1
9	Vol u me of unit cell = $a^3 = (288 \times 10^{10} \text{ c m})^3$ = 2.39 x 10 ²³ c m ³	
	Volume of 208 g of the element $= \frac{mass}{density} = \frac{208g}{7.2\mathrm{gcm^{-3}}} = 28.88\mathrm{cm^3}$ Number of unit cells in this volume $= \frac{28.88\mathrm{cm^3}}{2.39\times10^{-23}\mathrm{cm^3}/\mathrm{unit}\mathrm{cell}} = 12.08\times10^{23}\mathrm{unit}\mathrm{cells}$ Since each <i>bcc</i> cubic unit cell contains 2 atoms, therefore, the total number of atoms in 208 g = 2 (atoms/unit cell) \times 12.08 \times 10 ²³ unit cells $= 24.16\times10^{23}\mathrm{atoms}$	1
	(or any other correct method may be used)	
10	 Di ode is a combination of n-type and p-type semi conductors and is used as rectifier. npn and pnp type of transistors are used to detect or amplify radio or audio signals. The solar cell is an efficient photo diode used for conversion of light energy to electrical energy. 	
	(any t wo)	1+1

11	(i) Because the ions present in saline water enhance the electroche mical process of rusting (ii) Because the number of ions per unit volume decreases with dilution	
12	The activated complex has a transient existence and breaks up at a definite rate to form the	1+1
	product. The energy required to for mactivated complex is called activation energy.	1+1
12	OR The rate of reaction is defined as the change in concentration of reactants or products per unit time. or mathematical expression If the rate is measured in larger time interval (Δt) then it is called average rate whereas if the rate is measured in very small time interval (Δt —0) then it is called instantaneous rate.	1 1/2+1/2
13		
	$\log \frac{[R]_1}{[R]_2} = \frac{k(t_2 - t_1)}{2.303}$ $k = \frac{2.303}{(t_2 - t_1)} \log \frac{[R]_1}{[R]_2}$ $2.303 \qquad 1.24 \times 10^{-2} \text{ mol } 1^{-1}$	1/2
	$= \frac{2.303}{(60 \text{min} - 0 \text{min})} \log \frac{1.24 \times 10^{-2} \text{mol} \text{L}^{-1}}{0.20 \times 10^{-2} \text{mol} \text{L}^{-1}}$	1
	$= \frac{2.303}{60} \log 6.2 \mathrm{min^{-1}}$ $k = 0.0304 \mathrm{min^{-1}}$	1/2
14	(a) 7+ 7+	1/2 + 1/2
	Cis Tours	
	(b) sp ³ d ² , octahedral / It is an outer orbital octahedral complex with sp ³ d ² hybridisation.	1/2 + 1/2

15	(a) Add aq KOH followed by 2,4 DNP to both the compounds. 1,1-dichloroethane gives yellow ppt.	1
	(or any other correct test)	
	(b) CH ₃ Br KCN CH ₃ CN CH ₃ Mg Br/ H ₃ O CH ₃ COCH ₃	1
	(or by any other suitable method)	
16	(i)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Aryl halide X = Cl, Br	
	(ii)	
	$+2\text{Na} + \text{RX} \xrightarrow{\text{Ether}} \mathbb{R} + 2\text{Na} \times \mathbb{R}$	1+1
17	(a) Because of resonance in CH ₂ CONH ₂ , Nacquires +ve charge whereas due to +I effect electron density on Nincreases in CH ₂ CH ₂ NH ₂ (b) Because of strong activation effect or +R effect of NH ₂ group in aromatic a mines.	1+1
18	(or can be explained by diagrammatic representation) (i) CH ₃ - CH ₂ - CH ₂ NH ₂	
	NH ₂ (ii) CH ₃ - CH- CH ₃	
	\ / - 3 - - - - - - - - - - -	
	(iii) СӉ- СӉ- NH СӉ	

	CH ₃	
	(iv) CH ₃ -NCH ₃	½x3= 1 ½
	(At least 3 correct structures should be written)	
	Propana mi ne and 2-a mi nopropane	1/2
19	$Ag^+ + e^- \rightarrow Ag$ 108 g is deposited by 96500C electric charge 1. 45 g of silver is deposited by $\underline{96500C \times 1.45 \text{ g}} = 1295.6 \text{ C}$ $\underline{108 \text{ g}}$	1
	Quantity of electricity passed = Current x t $t = \frac{1295.6C}{1.5 \text{ a np}} = 863.7 \text{ s}$ 1.5 a np $Cu^{2+} + 2e^{-} \rightarrow Cu$ $2 \times 96500 \text{ C deposits } 63.5 \text{ g of } Cu$	1
	1295. 6 C deposits 63. 5g x 1295. 6 C of Cu 2 x 96500 C = 0. 426 g of Cu	1/2
	$Zn^{2+} + 2e^{-} \rightarrow Zn$ 2 x 96500 C deposits 65.4 g of Zn 1295.6 C deposits 65.4g x 1295.6 C of Zn 2 x 96500 C	1/2
	= 0.44 g of Zn	
19	$E_{\text{cell}} = E_{\text{cat hode}} - E_{\text{anode}}^{\text{O}}$	
	= 0.34 V - (-0.76) V = +1.10 V	1
	$\Delta G = -nFE_{cell}^{O}$	1/2
	= $-2 \times 96500 \text{ C mol}^{-1} \times 1.10 \text{ V}$ = $-213.3 \text{ kJ mol}^{-1}$	1/2 1

20	 (i) Shape selective Catalysis: The reaction in which a catalyst action depends upon its pore structure and molecular sizes of the reactants as well as products is called shape selective catalysis. (ii) M celles: They are associated colloid which behave as electrolytes at low concentration but behave as colloid at higher concentration. (iii) Lyophobic sols: The sols which are solvent repelling in nature. 	1x3=3
21	(a) The impure N is heated with carbon monoxide (CO) to form volatile compound N(CO) ₄ which on further heating decomposes at higher temperature gives pure N. (b) Because of higher entropy in liquid state. (c) Na CN is used for the leaching of silver ore in the presence of air to form a soluble complex.	1x3=3
22	(i) Ram Kind and helpful	1/2+1/2
	Police: Bound to their duty and helpful (ii) In the manufacture of fertilizers In petrol eu mrefining In det er gent industry In storage batteries	1/2x4=2
23	(a) PbS + 4Q PbSQ + 4Q (or any other correct reaction)	
	(b) 6 Xe F ₄ + 12 H ₂ O 2 Xe Q ₃ + 4 Xe + 24 HF + 3 Q ₂ (c) Because H is more stable in +3 oxidation state.	1x3=3

24		
24	(a) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	(b)	
	Zn dust CH3COCI COCH3 CH3COCI amhydr AICI3	1
25	(b) Proteins which consist of linear thread like molecules which lie side by side. ex. Insulin, albumins (any one)	1 1/2
	(c) Nucleic acids are polymers of nuclectides. Function: They are responsible for transfer of genetic information from one generation to the other./ protein synthesis (any one function)	1 1/2
26	(a) Chain Growth Polymerisation Step Growth Polymerisation	
	They are used when molecules of the same monomer or different monomers add together on a large scale. They are for med by the condensation of bifunctional monomers.	1
-	•	

Downloaded From: http://www.cbseportal.com

	There is no loss of simple molecules.	They result in the loss of some simple molecule.	1
	(b) Sul phur for ms cross links during vul canizati	on and makes the rubber hard	1
27.	Li mited Spectrum Antibiotics: They are effe ex. Penicillin G	cti ve agai nst a si ngle organis m or di sease.	1/2 + 1/2
	Antioxidants: Che mical substances which preantioxidants. ex. BHA (or any other example)	event the oxidation in food stuff etc. are called	1/2 + 1/2
	Tranquilizers: Drugs which act on central neare called tranquilizers. ex. Equanil, Seconal, luminal etc (or any other	rvous system and thus help in reducing anxiety er example)	1/2 + 1/2

(a)		
Mol	lality of sugar solution = $\frac{n_{\text{C}_{12}\text{H}_{22}\text{O}_{11}}}{W_{\text{H}_2\text{O}} \text{ (in grams)}} \times 1000$	1/2
∴ Molality ∴ Freezing	$= \frac{5}{342} \times \frac{1000}{100} = 0.146 \text{ m}$ If sugar solution = 273.15 K - 271 K = 2.15 K $\Delta T_f = K_f \times m$ $K_f = \frac{\Delta T_f}{m} = \frac{2.15}{0.146} \text{ K kg mol}^{-1}$ By of glucose solution = $\frac{n_{C_6H_{12}O_6}}{w_{H_{20}}(\text{in grams})} \times 1000$ $= \frac{5}{180} \times \frac{1000}{100} = 0.278 \text{ mol kg}^{-1}$ $\Delta T_f = K_f \times m$ $\Delta T_f \text{ (Glucose)} = \frac{2.15}{0.146} \text{K kg mol}^{-1} \times 0.278 \text{ mol kg}^{-1}$ $= 4.09 \text{ K}$ Sing point of glucose solution = 273.15 K - 4.09 K = 269.06 K.	1 1 1/2
directl	seal ed under high pressure. Scuba divers must cope with high concentrations of dissolved Nitrogen with breathing air at high pressure under water. To avoid this air is diluted with He.	1 1/2 +1
	8	

20()		
28(a)	no. of moles of benzene $(n_B) = \frac{23.49}{789 \text{ mol}^{-1}} = 0.3$	
	no. of moles of toluene $(n_T) = \frac{64.49}{929mor^3}$	
	$x_{B} = \frac{m_{B}}{m_{B} + m_{T}} = \frac{0.3}{0.3 + 0.7} = 0.3$	1/2
	$x_T = 0.7$	1/2
	$b_0 = b_0^{\circ} \cdot x_0 = 75 \text{mm} \times 0.3 = 22.5 \text{mm}$	1/2
	b+= b0, xT = 22mm × 0.7 = 15.4 mm	1/2
	Total V.P of solution = 22.5+15.4 = 37.9 mm	
	Mole fraction of Benzene in vapour phase	
	= Partial V.P of Benzene Total V.P of Solution	
	$=\frac{22.5}{37.9}=0.6$	1
(b)		
	nand solvent	
1	negat solution	1
Vapour pressure	Frozen advert	
Vapour	$-\Delta T_{\rm c}$	
	$\begin{array}{c c} T_r & T_r^o \\ \hline \\ \text{Temperature/K} \longrightarrow \end{array}$	1
	Iding non volatile solute vapour pressure of solution decreases. Therefore to e the solution temperature has to be lowered down causing depression of	
	ng point.	

29.	(a) Because of Lant hanoid contraction	
	(b) Because of the presence of unpaired electrons there is strong metallic bonding and thus have high enthal py of at omization	
	(c) Because M_1^{2+} is more stable due to half filled $3d^5$ whereas G_2^{3+} is stable due to half	
	filled t_{2g}^3 orbital.	
	(d) Because of the absence of unpaired electrons.	1x5=
	(e) Because of half filled stable 3d ⁵ configuration.	5
	OR	
	(a) $4 \text{ Fe Cr}_2 \mathbf{Q}_1 + 8 \text{ Na}_2 \mathbf{CQ}_3 + 7 \mathbf{Q}_2 \rightarrow 8 \text{ Na}_2 \mathbf{Cr} \mathbf{Q}_1 + 2 \text{Fe}_2 \mathbf{Q}_1 + 8 \mathbf{CQ}_2$	
29	$\begin{vmatrix} 4 \text{ Re } G_2 G_1 + 3 \text{ Na}_2 G_3 + 7G_2 & -36 \text{ Na}_2 G_4 + 2 \text{ Re}_2 G_3 + 6 G_2 \\ 2 \text{Na}_2 G_1 G_1 + 2 \text{H}^- \rightarrow \text{Na}_2 G_2 G_1 + 2 \text{Na}^+ + \text{H}_2 G_2 G_3 + 6 G_2 G_4 \end{vmatrix}$	1 ½
	$\begin{vmatrix} 2 \operatorname{Na}_2 \operatorname{Cl} \operatorname{Q}_1 + 2 \operatorname{II} & \rightarrow \operatorname{Na}_2 \operatorname{Cl}_2 \operatorname{Q}_1 + 2 \operatorname{Na}_1 + \operatorname{I}_2 \operatorname{O}_1 \\ \operatorname{Na}_2 \operatorname{Cl} \operatorname{Q}_1 + 2 \operatorname{KO}_1 & \rightarrow \operatorname{K}_2 \operatorname{Cl}_2 \operatorname{Q}_1 + 2 \operatorname{Na}_1 \operatorname{O}_1 \end{vmatrix}$	
		1/2
	Dichromate ion changes to chromate ion on increase in pH	72
	(b) The steady decrease in at omic radii with increase in at omic number is called lant hanoid contraction.	1
	Caroa fair initio a constant of	
	consequences:	
	5d series elements have nearly same atomic radii as that of 4d series elements.	1
	(c) Because of the presence of unpaired electrons.	1
		1
30.	(a) A=(CH ₃ CO) ₂ O C=CH ₃ COOC ₂ H ₃ E=CH ₃ COCH ₃	1 1/2
	B=CH ₃ COOH D=C ₂ H ₃ OH	1 ½
	(b)	
	(i) <u>Propanol and Propanone</u> : Propanone gives yellow ppt of Iodof or n(CHI ₃) on addition of NaOH/I ₂ whereas Propanol does not give this test. (or any other suitable test)	1

	(ii) Because carbon of carboxyl group is less electrophillic.	1
	OR	
30	(a)	
	i) CH2CH3 KMnO4 COOH (i) NaOH/CaO	
	CH3 COCH3 LIAIHY CH3CH-CH3 CONCHSCOY CH3-CH=CH2	1+1
	(or any other correct suitable	net hod)
	 (i) Because - COOH is a deactivating group. (ii) Because one NH is involved in resonance with carbonyl group. 	1+1
	(c)	
	$C=0$ $\xrightarrow{H_2N-NH_2}$ $C=N-NH_2$ $\xrightarrow{KOH_2GIXOI}$ CH_2	1
	Sh. S K Munj al	
	Dr (Mrs.) Sangeeta Bhatia	
	Prof. R D Shukla Mf. K M Abdul Raheem	
	Dr. K N Uppadhya Ml. D A Mshra	
	Mr. Rakesh Dhawan Ml. Deshbir Singh	
	Ms. Neeru Sofat M. Akhileshwar Mishra	
	Mr. Virendra Singh	