CHEMISTRY MARKING SCHEME Bhubaneswar – 2015 Set 1 - Code No. 56/1/B

Ques.	Value points	Marks
1.	Negative charge	1
2.	XY ₃	1
3.	HOCI , HOCIO, HOCIO ₂ , HOCIO ₃ (Any two)	1/2 +1/2
4.	1-Phenylpropan-2-ol	1
5.	CH ₃ - CH - CH ₂ - CH ₂ - Br	1
6.	(i) H_2 / Pd-BaSO ₄ (ii) NaOH/CaO , Δ	1 1
6.	(i) $C_6H_5 CO C_6H_5 < CH_3COCH_3 < CH_3CHO$ (ii) $CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	1 1
7.	(i) Due to comparable energies of 5f, 6d and 7s orbitals.	1
	(ii) Because 5f electrons have poorer shielding effect than 4f electrons.	1
8.	Formula: $w=z\times i\times t$ $time \ taken \ in \ sec = \frac{w\times Valance\times 96500}{Mol\ Mass\times Current\ in\ Amp}$	1/2
	Substituting the values in the formula we get: $time \ taken \ in \ sec = \frac{1.17 \ g \times 2 \times 96500 \ C \ mol^{-1}}{58.5 \ g \ mol^{-1} \times 5 \ amp}$ $time \ taken \ in \ sec = \frac{225810}{292.5}$	1
	t=772 s (Or by any other correct method)	1/2
9.	(i) Potassium hexacyanidoferrate (III)	1
	(ii) $[Co(NH_3)_5 NO_2]^{2+}$	1
10.	(i) Positive deviation, lowering of temperature or absorption of heat. (ii) By applying an external pressure greater than the osmotic pressure on the solution or $P>\pi$	½ ,½ ½ ,

	Reverse osmosis is used in desalination of hard water / sea water.	1/2
11.	(i) Maltose	1
	 (ii) • Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose • Thymine is present in DNA whereas in RNA Uracil is present (Any one) (iii) Beri-Beri 	1
12.	$E_{cell} = E_{cell}^{0} - \frac{0.0591}{nF} \log \frac{[A^{2+}]}{[B^{2+}]}$	1
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V \log [0.0001]$ [0.001]	1
	$2.6805 = E^{0}_{cell} - \frac{0.059}{2} \text{ V log } 10^{-1} = E^{0}_{cell} - \frac{0.059 \text{ V}}{2} (-1)$ $2.6805 = E^{0}_{cell} + 0.0295 \text{ V}$ $E^{0}_{cell} = 2.6805 - 0.0295$	
	$E_{cell}^{0} = 2.6510 \text{ V}$	1
13.	(i) Solution is homogeneous colloid is heterogeneous In solution the size of particles (solute) is less than 1 nm whereas in colloids the range of size of particles is $1 - 1000$ nm (10^{-9} to 10^{-6} m)(Any one point)	1
	 (ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in heterogeneous catalysis they are in different phase. (iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil The O/W type emulsion can be diluted with water whereas the W/O emulsion can't be diluted with water. 	1
	(Any one point)	
14.	Formula $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	1
	$\frac{23.75 mm - 23.375 mm}{23.75 mm} = \frac{5.0 g \times 18 g / mol}{M_2 \times 95.0 g}$	
	$M_2 = \frac{5.0 g \times 18.0 g / mol \times 23.75 mm}{95 g \times 0.375 mm}$	1
15.	$M_2 = 60.0 \text{ g/mol}$ (i) Distillation	1
	(ii) Collector / enhancing the non-wettability of mineral particles.	1
	(iii) As ΔS is positive /ΔG is more negative	1
16.	(i) Stoichiometric Defect	1
	(ii) Frenkel Defect	1
	(iii) Due to small size of Ag ⁺ ion	1

17.	(i) CH ₃ – CH(OH) – CN	1
	(ii) $C_6H_5 - COOH$	1
	(iii) $CH_3 - CH_2NH_2$	1
18.	(i) Glyptal:	1
	COOH	
	СООН	
	Pthalic Acid	
	and HO-CH ₂ - CH ₂ -OH (ethylene glycol)	
	(ii) Teflon: Monomer: 1,1,2,2-Tetrafluoroethene	
	$ \begin{array}{cccc} F & F \\ & \\ F & C & \longrightarrow & C & \longrightarrow & F \end{array} $	
	1,1,2,2-Tetrafluoroethene (iii) Nylon-6	
	Monomer: Caprolactum	1
	Н	
	N O	
	H ₂ C	
	H ₂ C CH ₂	
	Caprolactum	
19.	(Note: half mark for structure/s and half mark for name/s) (i) Because of higher oxidation state of Mn in Mn ₂ O ₇ .	1
13.	(ii) Due to almost similar atomic size / comparable size.	1
	(iii) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
20.	(ii) $t_{2g}^{3} e_{g}^{1}$	1 1/2
20.	(iii) Hybridization dsp^2 , Shape \rightarrow Square planar or diagram	1 ½
	2-	
	NC CN	
	Ni Ni	
Ī	NC CN	

		1
21.	(i) Due to the stability of benzyl carbocation/resonance/Diagram	1
	(ii) Because 2-Bromobutane has a chiral centre.	1
	(iii) Due to - I effect of halogen.	1
22.	(i) $C_6H_5NH_2 \xrightarrow{NaNO_2 + HCl \atop 0^{\circ} - 5^{\circ}C} C_6H_5N_2Cl \xrightarrow{H_2O+H^+ \atop OrHydrolysis} C_6H_5OH$	1
	(ii) $CH_3 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - CH_2Br \xrightarrow{KOH_{Aq}} CH_3CH_2CH_2OH$	1
	OCH ₃ CH ₃ Cl Anh.AlCl ₃ CH ₃ CH ₃	
	2-Methoxytoluene	1
	(Or any correct method) OR	
		1
22.	(i) $CH_3 - CH_2 - CH_2OH \xrightarrow{Cu/573K} CH_3CHO + H_2$ (ii)	
	он он он	1
	CH ₃ COCl +	
	Phenol 2-Hydroxyacetophenone COCH ₃	
	4-Hydroxyacetophenone	1
	(iii) $C_2H_5Cl + NaOCH_3 \rightarrow C_2H_5-O-CH_3 + NaCl$	_
23.	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (Any two) (ii) Through posters, nukkad natak in community, social media, play in assembly or any	
	other (Any two)	1
	(iii) Tranquilizers are drugs used for treatment of stress or mild and severe mental	1/2 , 1/2
	disorders. Eg: equanil (or any other suitable example)	
	(iv) Aspartame is unstable at cooking temperature.	1
24.	(a)	
	Formula: $k = \frac{2.303}{t} \log \frac{\left[CH_3COOCH_3\right]_1}{\left[CH_3COOCH_3\right]_2}$	1/2
	$k_1 = \frac{2.303}{20s} \log \frac{0.4M}{0.2M}$	1
	$k_1 = 0.03 \text{ s}^{-1}$	
	$k_2 = \frac{2.303}{40s} \log \frac{0.4M}{0.1M}$	

	$k_2 = 0.03 \text{ s}^{-1}$	1
	Since constant values of rate constants are obtained by applying 1 st Order integrated rate law, the reaction is pseudo first order reaction.	1/2
	(b) $Av rate = \frac{total \ change \ in \ concentration}{total \ change \ in \ time}$ or	1/2
	$Av \ rate = -\frac{[CH_{3}COOCH_{3}] \ final - [CH_{3}COOCH_{3}] initial}{Time(f) - Time(i)}$	
	$Av rate = -\frac{0.10M - 0.20M}{40 Sec - 20 Sec}$	1
	Av rate = $0.0005 \text{ M sec}^{-1} \text{ or } 5.0 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}$	1/2
	OR	
24	a) i) Collision frequency: No of collisions taking place per second per unit volume. ii) Rate Constant: It is the rate of reaction when the concentration of reactants	1
	is unity i.e. 1 M. It is temperature dependent b) $\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left\lceil \frac{T_2 - T_1}{T_1 T_2} \right\rceil$	1
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
	$\log 6 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	1
	$0.7782 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	
	$0.7782 = \frac{Ea}{19.147} [0.00047619]$	
	$\frac{0.7782 \times 19.147}{0.00047619} = Ea = 31290.44 \text{ J/mol}$ Ea = 31.29 kJ/mol	1
25.	a) (i) The +3 Oxidation state of Bi is more stable than Sb(III).	1
	(ii) Because the electronegativity of Cl is greater than that of I.(iii) Due to decrease in electronegativity and increase in the atomic size.	1
	•	
I		

