CHEMISTRY MARKING SCHEME Guwahati -2015 SET -56/2/G

<u>SE</u>	<u>T</u>	<u>-5</u>	6/	2/	'G

Sr.	Value points	Marks		
No.				
1	Zn : [Ar] 3d ¹⁰ 4s ² / Because of Fully filled d-orbitals in ground state as well as in the oxidized state.			
2	1 F/ 1 Faraday	1		
3	CH ₃	1		
	$C_6H_5 - CH - Br$			
4	Dispersed phase: Solid, Dispersion medium: Gas	1/2 + 1/2		
5	2,4 – dimethylphenol	1		
6	$\Delta T_f = T_f^0 - T_f$ The decrease in freezing point of a solvent due to the dissolution of a non-volatile solute in it is called depression in freezing point			
	$\Delta T_f = K_f m$			
	$\Delta T_{f} = K_{f \times \frac{W_{2}/M_{2}}{W_{1}/1000}}$ $M_{2} = K_{f}.w_{2} \times 1000$ $W_{1}.\Delta T_{f}$			
7	Order Molecularity	1+1		
	Sum of powers to which the concentration terms are raised in rate law expression. The number of reacting species in an elementary reaction.			
	May also be zero or in fraction Cannot be zero or fraction. (or any other correct differences)			
8	i) $C_6H_5NH_2 < CH_3CH_2NH_2 < CH_3NHCH_3$ ii) $(CH_3)_3N < CH_3NHCH_3 < CH_3NH_2$	1+1		

Downloaded From: http://www.cbseportal.com

9		1+1
	i) O N O N F	
10	Dichloridobis(ethane –1,2-diamine)cobalt (III) ion Geometrical Isomerism / cis-trans Isomerism/ optical isomerism	1+1
10	OR i) [Ni (CO) ₄] ii) $K_2[Fe(CN)_4]$	1+1
11	(i) CH ₃ –CH ₂ - CH ₂ OH (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃	1+1+1
	(iii) MgBr	
12	(ii) $\frac{CH_3COCI}{AnhAICI_3} \xrightarrow{OH}_{COCH_3}$ $CH_3-CH_2-CI+CH_3ONa \longrightarrow CH_3-CH_2-O-CH_3$ (iii) $CH_3-CO-CH_3 \xrightarrow{\text{(i) } CH_3MgBr} \xrightarrow{H_3C-C-OH}_{CH_3}$ (Or any other correct method.)	1+1+1
13	(i) Aniline being a base reacts with AlCl₃(Lewis Acid) to form a salt. (ii) —CH₃ group shows +I − effect(electron releasing group) whereas − NO₂group shows −I- effect(electron withdrawing group) (iii)To reduce activating effect of −NH₂.	1+1+1

14	$\frac{\mathbf{p}_{1}^{0} - \mathbf{p}_{1}}{\mathbf{p}_{1}^{0}} = \frac{\mathbf{w}_{2} \times \mathbf{M}_{1}}{\mathbf{M}_{2} \times \mathbf{w}_{1}}$ $\frac{17.5 - P_{1}}{17.5} = \frac{15/180}{\frac{15}{180} + \frac{150}{18}}$	1
	$= \frac{15}{1515}$	1
	= 0.01	
	$17.5 - P_1 = 0.01X 17.5$	1
	$17.5 - 0.175 = P_1$ $P_1 = 17.325 \text{ mmHg}$	
15	(i) Crystalline solids – They have definite and regular geometry which extends throughout the crystal .i.e , they have long range order . (ii) Frenkel defect – caused by the dislocation of cation in the crystal lattice. (iii) n – type semiconductor – These are obtained due to metal –excess defect or by adding trace amounts of group 15 elements (P, As) to extremely pure silicon or germanium by doping.	1+1+1
16	$k = 2.303 \log [A_0]$ t [A]	1/2
	k = <u>2.303</u> log <u>100</u> 10min 75	
	k = <u>2.303 x 0.125</u> 10min	1/2
	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \underline{0.693} = \underline{0.693}$ $k = 0.02879 \text{ min}^{-1}$	
	t _{1/2} = 24.07min	1
17	 i) When both absorption and adsorption take place together, the phenomenon is referred to as Sorption. ii) The colloidal dispersion/solution in which the dispersed phase has got an affinity for the dispersion medium / solvent loving. iii) Colloids in which small sized dispersed phase particles aggregate to form particles of sizes within the colloidal range (micelles) at a definite concentration of the solution (above CMC)/substance which act as strong electrolyte at low concentrations but act as colloids at higher concentration due to micelle formation. 	1+1+1

18	a)Impure Zr reacts with I ₂ to form volatile ZrI ₄ which when heated at higher	1+1+1
18		1+1+1
	temperature decomposes to give pure Zr.	
	b)CO acts as a reducing agent.	
	c) It is a mixture of Cu₂S and FeS.	
19	 (i) Styrene, C₆H₅-CH=CH₂ (ii) Adipic Acid HOOC-CH₂-CH₂-CH₂-CH₂-COOH Hexamethylenediamine H₂N-(CH₂)₆-NH₂ (iii) Ethylene glycol HO-CH₂-CH₂-OH 	1/2 + 1/2
	HOOC—COOH Terephthalic acid	1/2 + 1/2
	(note: half mark for name/s and half mark for structure/s) OR	
19	Linear polymers – Monomeric units join to form long polymeric chains.	1/2 + 1/2
	2. Branched chain polymers - Monomeric units join not only to form long polymeric chains but also branches.	1/2 + 1/2
	3. Three dimensional network polymers or cross-linked polymers- Monomeric units join to form long polymeric chains and cross links.	1/2 + 1/2
20	CN	1+1+1
	HOH₂C-(CHOH)4−Ç− OH	
	н эзг	
	(i) (ii) Intermolecular H-Bonding. (iii) Pernicious Anaemia.	
21	 i) Due to intermolecular H-bonding in ammonia . ii) Bond dissociation enthalpy of H—Te bond is lesser than that of H—S bond. iii)Cl₂ + H₂O → HOCl + HCl or Due to the formation of Hydrochloric acid and Hypochlorus acid. 	1+1+1
22		1/2 + 1/2
	(a) (i) sp ³ d ² , Octahedral (ii) sp ³ , Tetrahedral	1/2 + 1/2
	(b) CO, because of synergic or back bonding.	1/2 , 1/2
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (ii) Through posters, publical patch in community, social media, play in assembly or	1
	(ii) Through posters, nukkad natak in community, social media, play in assembly or any other	1/2 , 1/2
	(iii) Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders. Eg: equanil (or any other suitable example)	1
	(iv) Aspartame is unstable at cooking temperature.	

24		½ x 4=2
24	OH I	/2 X 4-Z
	(a) A- CH₃COCl B- CH₃CHO C- CH3−CH−CH3	
	D- CH ₃ CH ₂ OH b) i)On heating with NaOH/ I ₂ , CH ₃ COCH ₂ CH ₃ gives yellow ppt of CHI ₃ whereas	1
	CH ₃ CH ₂ CHO does not.	1
	ii)On adding NaHCO₃ solution, ethanoic acid gives brisk effervescence whereas	1
	ethanal does not.	
	(Or any other distinguishing test)	
	c) CH ₃ COCH ₂ CH(Cl)CH ₃	1
	OR	
24	(a) (i) CH ₃ -CH ₂ -CH ₃	1
	(ii) CH ₃ -CH ₂ -CH=N-OH	1
	ОН	1
	(iii) CH3-CH2-CH-CN	*
	2	
	(b) HCHO >CH₃CHO >CH₃COCH₃	1
	(c) On heating with NaOH/ I ₂ , C ₆ H ₅ COCH ₃ gives yellow ppt of CHI ₃ whereas	1
	C ₆ H ₅ CHO does not.	
25	(or any other distinguishing test) $E_{Cell} = (E^{O}c - E^{O}A) - 0.059/2 \text{ V log } [Mg^{2+}]/[Ag^{+}]^{2}$	1
23	$= [.80 - (-2.37)] - 0.059/2 \text{ V log } [10]^{-2}/(10^{-4})^{2}]$	1
	$= 3.17 - 0.0295 \text{ V X log } 10^6$	
	= 3.17-0.0295 V X 6	
	= 3.17-0.1770 = 2.9930 V	1
	$\Delta G = -nFE_{Cell}$	1 1/2
	= -2 X 96500 Cmol ⁻¹ X 2.9930 V	1/2
	= -577649 Jmol ⁻¹	
	= -577.649 kJmol ⁻¹	1
	OR	
25	$\Lambda_{\rm m}$ =(k/M) x 1000 Scm ² mol ⁻¹	
	= $(4.95 \times 10^{-5}/0.001) \times 1000 \text{ Scm}^2 \text{mol}^{-1}$	1/2
	$= 49.5 \text{ Scm}^2 \text{mol}^{-1}$	1
		1
	$\alpha = \Lambda_{M}/\Lambda_{M}^{0}$	
	$\Lambda_{M}^{0} = \lambda_{CH3COO}^{0} + \lambda_{H+}^{0}$	1/2
	$= (40.9 + 349.6) \text{ Scm}^2 \text{mol}^{-1}$	

Downloaded From: http://www.cbseportal.com

_			
		= 390.5 S cm ² mol ⁻¹ α = $49.5/390.5$ = 0.127 or 12.7%	1
		b)Which converts energy of combustion of fuels directly into electrical energy. Advantages: high efficiency,pollution free	1
	26	(i) +3 oxidation state of Eu is more stable.	1
		(ii) Due to d-d transition / unpaired electrons in d orbitals.	1
		(iii) Due to completely filled d-orbitals which leads to weak metallic bond.	1
		(b) (i) $2KMnO_4 \longrightarrow K_2MnO_4 + O_2 + MnO_2$	1
		(ii) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$	1
		OR	
	26	(a) (i)because small size atoms like B, C, H,N occupy interstitial sites in the lattice of transition elements.	1
		(ii) Because Cr^{3+} has the stable t_{2g}^{3} configuration whereas Mn^{2+} has stable $3d^{5}$ configuration(half filled).	1
		(iii) Due to involvement of d-electrons in metallic bonding.	1
		(b) Misch metal is an alloy which consist of a lanthanoid metal(95%) and iron (5%) and traces of S,C,Ca and Al.	1
		USE- It is used in Mg-based alloy to produce bullets, shell and lighter – flint.	1
- 1			1