
	<u>SET -56/3/G</u>				
Sr. No.	Value points	Marks			
1	2,4 – dimethylphenol	1			
2	Zn : [Ar] 3d ¹⁰ 4s ² / Because of Fully filled d-orbitals in ground state as well as in the oxidized state.	1			
3	1 F/ 1 Faraday	1			
4	$C_{6}H_{5} = \begin{matrix} CH_{3} \\ CH_{5} - Br \end{matrix}$	1			
5	Dispersed phase: Solid, Dispersion medium: Gas	1/2 + 1/2			
6	OrderMolecularitySum of powers to which the concentration terms are raised in rate law expression.The number of reacting species in an elementary reaction.	1+1			
	May also be zero or in fractionCannot be zero or fraction.(or any other correct differences)				
7		1+1			
8	Dichloridobis(ethane –1,2-diamine)cobalt (III) ion Geometrical Isomerism / cis-trans Isomerism/ optical isomerism OR	1+1			
8	i) [Ni (CO) ₄] ii) K ₂ [Fe(CN) ₄]	1+1			

CHEMISTRY MARKING SCHEME Guwahati -2015

9	$\Delta T_{f} = T_{f}^{0} - T_{f}$	1
	The decrease in freezing point of a solvent due to the dissolution of a non-volatile	1
	solute in it is called depression in freezing point	
	$\Delta T_{f} = K_{f}m$	
		1
	$\Delta T_{f} = K_{f x} \frac{W_{2} / M_{2}}{W_{1} / 1000}$	
	$M_2 = K_{f.w_2} \times 1000$	
	W ₁ .ΔT _f	
10		1+1
10	i) $C_6H_5 NH_2 < CH_3 CH_2 NH_2 < CH_3 NHCH_3$ ii) (CH_) N < CH_NHCH < CH_NH	TIT
11	ii) $(CH_3)_3N < CH_3 NHCH_3 < CH_3 NH_2$	
11	(i) Styrong CH, CH-CH	1/2 + 1/2
	(i) Styrene, C_6H_5 -CH=CH ₂	1/2 ' 1/2
	(ii) Adipic Acid HOOC- CH_2 - CH_2 - CH_2 - CH_2 - $COOH$ Hexamethylenediamine H_2N -(CH_2) ₆ - NH_2	
	(iii) Ethylene glycol HO-CH ₂ -CH ₂ -OH	1/2 + 1/2
	(iii) Eurylene grycorho-Ch ₂ -Ch ₂ -Oh	_,,_
	Terephthalic acid	
	(note: half mark for name/s and half mark for structure/s)	$\frac{1}{2} + \frac{1}{2}$
	OR	
11	1. Linear polymers – Monomeric units join to form long polymeric chains.	1/ 1/
	0 - Dranchad akain nakumana - Manamaria unita isin nat ankuta farm kaon nakumaria akaina kut	$\frac{1}{2} + \frac{1}{2}$
	2. Branched chain polymers - Monomeric units join not only to form long polymeric chains but also branches.	1/2 + 1/2
		/2 1 /2
	3. Three dimensional network polymers or cross-linked polymers- Monomeric units join to form	1/2 + 1/2
12	long polymeric chains and cross links.	
12	CN	1+1+1
	HOH2C-(CHOH)4-C- OH	
	H (i)	
	(i) Intermolecular H-Bonding.	
	(ii) Pernicious Anaemia.	
13	i) When both absorption and adsorption take place together, the phenomenon is	1+1+1
	referred to as Sorption.	
	ii)The colloidal dispersion/solution in which the dispersed phase has got an affinity	
	for the dispersion medium / solvent loving.	
	iii)Colloids in which small sized dispersed phase particles aggregate to form	
	particles of sizes within the colloidal range (micelles) at a definite	
	particles of sizes within the conordariange (inicenes) at a definite	

,		
	concentration of the solution(above CMC)/substance which act as strong	
	electrolyte at low concentrations but act as colloids at higher concentration	
	due to micelle formation.	
14	a)Impure Zr reacts with I_2 to form volatile ZrI_4 which when heated at higher	1+1+1
	temperature decomposes to give pure Zr.	
	b)CO acts as a reducing agent.	
	c) It is a mixture of Cu_2S and FeS.	
15	i) Due to intermolecular H-bonding in ammonia .	1+1+1
	ii) Bond dissociation enthalpy of H—Te bond is lesser than that of H—S bond.	
	iii)Cl ₂ + H ₂ O \longrightarrow HOCl + HCl	
	or Due to the formation of Hydrochloric acid and Hypochlorus acid.	
16	(i) Aniline being a base reacts with AlCl ₃ (Lewis Acid) to form a salt.	1+1+1
10	(ii) $-CH_3$ group shows +I – effect(electron releasing group) whereas $-NO_2$ group	1.1.1
	shows $-I$ - effect(electron withdrawing group)	
17	(iii)To reduce activating effect of $-NH_2$.	
17	(a) (i) $au^{3}d^{2}$ Octobed as	1/2 + 1/2
	(a) (i) $sp^{3}d^{2}$, Octahedral	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$
	(ii) sp ³ , Tetrahedral	/2 〒 /2
		1/2 , 1/2
	(b) CO, because of synergic or back bonding.	/2 , /2
18	(i) $CH_3 - CH_2 - CH_2OH$	1+1+1
	(ii) CH ₃ -CH ₂ -CH(OH)-CH ₃	
	MgBr	
	(iii)	
19	(i) Crystalline solids – They have definite and regular geometry which extends	1+1+1
	throughout the crystal .i.e , they have long range order .	
	(ii) Frenkel defect – caused by the dislocation of cation in the crystal lattice.	
	(iii) n – type semiconductor – These are obtained due to metal –excess defect or by	
	adding trace amounts of group 15 elements (P, As) to extremely pure silicon or	
	germanium by doping .	
20	$k = 2.303 \log [A_0]$	
	$\begin{array}{ccc} t & [A] \end{array}$	
	، [٨]	1/2
	$k = 2.303 \log 100$	
	10min 75	
	$k = 2.303 \times 0.125$	1/2
	10min	
		1

24	$E_{Cell} = (E^{O}C - E^{O}A) - 0.059/2 V \log [Mg^{2+}] / [Ag^{+}]^{2}$	1
27	$= [.80 - (-2.37)] - 0.059/2 \vee \log [10^{-2}/(10^{-4})^{2}]$	1
	$= [.80 - (-2.37)] - 0.059/2 \times 100 [10 / (10)]$ = 3.17 - 0.0295 V X log 10 ⁶	-
	5	
	= 3.17-0.0295 V X 6	
	= 3.17-0.1770	
	= 2.9930 V	1
	$\Delta G = -nFE_{Cell}$	1/2
	= -2 X 96500 Cmol ⁻¹ X 2.9930 V	1/2
	$= -577649 \mathrm{Jmol}^{-1}$	
	$= -577.649 \text{ kJmol}^{-1}$	1
		-
	OR	
24	$\Lambda_{\rm m} = ({\rm k/M}) \times 1000 \ {\rm Scm}^2 {\rm mol}^{-1}$	
		1/2
	$= (4.95 \times 10^{-5}/0.001) \times 1000 \text{ Scm}^2 \text{mol}^{-1}$	/2
	$= 49.5 \text{ Scm}^2 \text{mol}^{-1}$	1
		1
	$\alpha = \Lambda_{\rm M} / \Lambda^0_{\rm M}$	
	$\Lambda^{0}_{M} = \lambda^{0}_{CH3COO} + \lambda^{0}_{H+}$	1/2
	$= (40.9+349.6) \text{ Scm}^2 \text{mol}^{-1}$	
	= 390.5 S cm ² mol ⁻¹	
	$\alpha = 49.5/390.5$	1
	= 0.127 or 12.7%	
		1
	b)Which converts energy of combustion of fuels directly into electrical energy.	1
	Advantages: high efficiency, pollution free	1
25	(i) +3 oxidation state of Eu is more stable.	1
	(ii) Due to d-d transition / unpaired electrons in d orbitals.	
		1
	(iii) Due to completely filled d-orbitals which leads to weak metallic bond.	-
	This bac to completely filled a-orbitals which leads to weak filletallic bolid.	1
	(b) (i) $2KMnO_4 _ \Delta _ K_2MnO_4 + O_2 + MnO_2$	-
	(b) (i) $2KMnO_4 \longrightarrow K_2MnO_4 + O_2 + MnO_2$	
		1
	(ii) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$	
		1
	OR	
25	(a) (i)because small size atoms like B, C , H,N occupy interstitial sites in the lattice of	1
	transition elements.	
	(ii) Because Cr^{3+} has the stable t_{2g}^{3} configuration whereas Mn^{2+} has stable $3d^{5}$	1
	configuration(half filled).	
	(iii) Due to involvement of d-electrons in metallic bonding.	1
		1
	(b) Misch metal is an alloy which consist of a lanthanoid metal(95%) and iron (5%) and	1
	traces of S,C,Ca and Al.	
	USE- It is used in Mg-based alloy to produce bullets, shell and lighter – flint.	1

26	½ x 4=2

OH C- CH3-CH-CH3 (a) CH₃COCI B-CH₃CHO A-1 D- CH_3CH_2OH b) i)On heating with NaOH/ I_2 , CH₃COCH₂CH₃ gives yellow ppt of CHI₃ whereas 1 CH₃CH₂CH₂CHO does not. ii)On adding NaHCO₃ solution, ethanoic acid gives brisk effervescence whereas ethanal does not. (Or any other distinguishing test) 1 c) CH₃COCH₂CH(CI)CH₃ OR 26 1 1 (a) (i) CH₃-CH₂-CH₃ (ii) CH₃-CH₂-CH=N-OH 1 ОН (iii) CH3-CH2-CH-CN 1 1 HCHO >CH₃CHO >CH₃COCH₃ (b) (c) On heating with NaOH/ I_2 , C₆H₅COCH₃gives yellow ppt of CHI₃ whereas C₆H₅CHO does not. (or any other distinguishing test)