MARKING SCHEME CHEMISYRY-2015

(CODE NO.: 56/3/C)

Q	Value points	Mark
1	2-Methylpropane-1,3-diol	1
2	White phosphorous, because of angular strain in P ₄ molecule/ discrete tetrahedral unit.	1
3	CH ₃ H ₃ C-C-Br CH ₃	1/2
	Because carbocation intermediate derived from $(CH_3)_3Br$ is more stable than carbocation from CH_3CH_2Br .	1/2
4	(i)Electrophoresis (ii) by mixing two oppositely charged sols (iii) by boiling (iv) by persistent dialysis (v) by addition of electrolyte (any one)	1
5	X_4Y_3	1
6	(i) pentaamminenitrito-N-cobalt(III) nitrate (ii) $K_2[Ni(CN)_4]$	1 1
7	(i) CH_3MgBr , H_3O^+	1
	(ii) Cl ₂ , P	1
8	It states that solubility of gas in liquid is directly proportional to partial pressure of the gas in equilibrium with the solution. With increase in temperature K_H value increases but solubility of gas in liquid decreases. / $K_H \alpha$ 1/solubility	1
	OR	1
8.	It states for solution containing volatile components the partial vapor pressure of each component of the solution is directly proportional to its mole fraction present in the solution.	1
	Ideal Solution Non Ideal	
	1. It obeys Raoult's Law over It does not obey Raoult's Law.	
	entire range of concentration	
	of solution.	1/2 +
	2.Solute – Solvent interaction Solute – Solvent interaction is	1/2
	is nearly same as in pure not same as solute-solute or	
	solvent –solvent interactions.	
	(or any other correct difference)	
9	Greater number of unpaired electron, greater is the interatomic interactions leading to	1
	strong metallic bonding.	

	Zn, no unpaired electrons hence weak metallic bonding.	1/2 ,1/2
10	 (a) H⁺ (aq) + e- → 1/2H₂ (g) E° = 0.00 V is feasible at cathode because its reduction potential is higher than the other reaction. 	1/2 , 1/2
	b. Because the overall reaction doesn't involve any ion in the solution whose concentration changes during its lifetime.	1
11	(i) CH_3 -CH= CH_2	1
	(ii) Cl Cl CH ₃ Cl Anhyd. AlCl ₃ CH ₃	
	$PCl_{3}/PCl_{5} KCN$ (iii) $C_{2}H_{5}OH C_{2}H_{5}Cl C_{2}H_{5}CN$	1
	OD.	
11	OR OH O2N NO2	
	(i) CH_3CH_2 $CH=CH_2$ (ii)	
	(iii) CH ₃ NC	1,1,1
12	 (i) Because -NO₂is an electron withdrawing group (ii) Due to H-Bonding (iii) Reaction occurs by S N1 mechanism 3⁰-carbocation (CH₃)₃C⁺ is more stable than CH₃⁺ 	1 1 1
13	$\Delta T_f = i \times K_f \times m$	1/2
	For $CaCl_2$ $i = 3$	1/2

	ATT (1 TV VV V 1000) (0 TV VV)	
	$\Delta T_f = (i \ x \ K_f \ x \ W_B \ X \ 1000) / (M_B \ x \ W_A)$	
	$2 = 3 \times 1.86 \times W_B \times 1000 / 111 \times 500$	1
	$W_B = 19.89 g$	1
14	$d = Z xM / a^3 x N_o$	1/2
	$10 \text{ g/cm}^3 = \text{Z x } 81 \text{ g/mol } / (3 \text{ x } 10^{-8} \text{ cm})^3 \text{ x } (6.023 \text{ x } 10^{23} \text{ /mol})$	1/2
	Z = 2.007	1
	L - 2.001	1
	Nature of cubic unit cell = bcc	1
15	$E^{\circ}_{\text{cell}} = E_R^{\ 0} - E_L^{\ 0}$	
	=0.00-(-0.14)	
	$E^{\circ}_{cell} = +0.14V$	
	$E_{cell} = E^{\circ}_{cell} - \underline{0.059 \text{ V}} \log \left[\text{Sn}^{2+} \right]$	1
	n $[H^{\dagger}]^2$	
	$\mathrm{E_{cell}} = \mathrm{E^{\circ}_{cell}} - 0.059 \mathrm{V_{log}} \mathrm{log} [0.001]$	1
	2 [0.01] ²	1
	$= +0.14 - 0.0295 \text{ V} \log 10$	
	$E_{cell} = 0.1105 \text{ V}$	1
16	٩	1
	en en en	
	\ /	
	(i) en cl	
	cis trans	1
	(ii) t_2g^4 / diagram	1
	(iii) [NiCl ₄] ²⁻ -Chloride ion being weak field ligand does not pair d electrons	1
	while in [Ni(CO) ₄], CO being strong field ligand pairs up the d electrons.	
17	(i)Because physisorption is exothermic process, so it decreases with increase in	1
	temperature.	1
	(ii) Because alum coagulates the impurities present in water.	1
	(iii) Due to continuous unbalanced bombardment / zig-zag motion of particles by the molecules of dispersion medium / it allows the particles to settle down.	1
18	(i) van Arkel method	1
10	(ii) CO acts as reducing agent	1
	(iii) Because ΔS becomes more positive, and ΔG becomes negative.	1
L		

Downloaded From: http://www.cbseportal.com

19	Н	
19		
	N O	
	H_2C	
	$_{\mathrm{H_2C}}$	
	C_{C} CH^{2}	1
	(i) Caprolactum Caprolactum	1
	(ii) Phenol + Formaldehyde	
	он	1
	+ HCHO	1
	(iii) 1,3-Butadiene + Acrylonitrile	
	CH ₂ =CH-CH=CH ₂ + CH ₂ =CH-CN	
	(Note: half mark for structure/s and half mark for name/s)	
20	(i) Starch	1
	(ii) Native Protein found in a biological system with a unique 3-D structure and	
	biological activity is called a native protein.	1
	Denatured protein is the protein with no biological activity.	
	(iii) Vitamin-K	1
21	(i) $CH_3 - CH(OH) - CN$	1
	(ii) C ₆ H ₅ COOH	1
22	(iii)CH ₃ CONH ₂	1
22	(a)(i) Because actinoids are radioactive and show wide range of oxidation states.	1
	(ii) Transition metals form complex compounds due to - small size, high ionic charge,	1
	availability of d orbitals	1
	b. $2\text{MnO}_4^- + 6\text{H} + 5 \text{SO}_3^{2-} \rightarrow 5\text{SO}_4^{2-} + 3\text{H}_2\text{O} + 2 \text{Mn}^{2+}$	1
23	(i) Concern, Compassion, caring, empathy (any two)	1/2, 1/2
23	(ii) By organizing rallies, street play, posters, public speech(any other relevant	1
	answer)	1
	(iii) Anti depressant drugs are those which inhibit depression	
	E.g. Iproniazide, Phenelzine (or any other)	1/2 , 1/2
	(iv) Saccharine / Sucralose/Alitame/Aspartame(any one)	1
24	(i) X-X' bond in inter halogens is weaker than X-X in halogens	1
	(ii) High bond dissociation energy/ due to presence of triple bond.	1
	/''\\D	
	(iii)Because bond dissociation enthalpy decreases from NH ₃ to BiH ₃ .	1

	b. (i) (ii)	
	HO OH OH	1,1
	OR	
24		
	a) PH ₃	1/ 1/
	P_4 + 3NaOH + 3 H_2 O -> 3Na H_2 PO ₂ +PH ₃ b)Helium	$\frac{1}{2}, \frac{1}{2}$
	c) Because bond dissociation energy of F-F bond is lower than that of Cl-Cl. d) $4H_3PO_3 \xrightarrow{HEAT} 3H_3PO_4 + PH_3$	1 1
	e)PbS + $4O_3$ \longrightarrow PbSO ₄ + $4O_2$	1
25	(i) $CH_3CONH_2 + Br_2 + 4KOH \rightarrow CH_3NH_2 + K_2CO_3 + 2 KBr + 2 H_2O$	1
	(ii)	
	$C_6H_5NH_2+NaNO_2+2HCl$ $\frac{273-278K}{2}C_6H_5N_2+Cl^2+NaCl+2H_2O$	1
	(iii) CO NH KOH CO NK RX CO N-R phthalimide potassium phthalimide N-alkyl phthalimide aqueous KOH	
	COOK + RNH ₂ alkylamine potassium phthalate	1
	$b.(i)Add\ CHCl_3$ and alc KOH , aniline gives foul smell of isocyanide whereas N-methyaniline does not.	1
	(ii)When (CH ₃) ₂ NH reacts with Benzene Sulphonyl Chloride(Hinsberg Reagent) gives ppt which is insoluble in alkali whereas (CH ₃) ₃ N does not reacts with Hinsberg's Reagent.	1
	(Or any other correct distinguishing test)	
	OR	

Downloaded From: http://www.cbseportal.com

	a.	
25	(i) (ii) (iii)	1,1,1
	OH OH	1,1,1
	b. (i) $(CH_3)_3N < C_2H_5NH2 < C_2H_5OH$	1
	(ii) p-nitoaniline < aniline < p-methylaniline	1
26	a. Rate of reaction is defined as change in concentration of reactants or products per unit time.	1
	Factors: concentration of reactant, temperature, pressure, surface area (any two)	1/2 , 1/2
	b. $log(k_2/k_1) = Ea/2.303R [1/T_1 - 1/T_2]$	1
	$\log (8 \times 10^{-2}/4 \times 10^{-2}) = E_a/2.303 \times 8.314 [1/300 - 1/310]$	1
	log2 = Ea/2.303 x 8.314 [1/300 – 1/310] Ea = 53598.59 J/mol or 53.6 kJ/mol	1
	OR	
26	(a)(i) Rate becomes 4 times (ii) 2 nd order	1 1
	b) $t_{1/2} = 0.693$	
	k 23.1 min = <u>0.693</u>	
	k	
	$k = 0.03 \text{min}^{-1}$	1
	$k = 2.303 \log [A_0]$ t [A]	1/2
	, [v]	
	$t = 2.303 \log 100$ $0.03 25$	1/2

Downloaded From: http://www.cbseportal.com

t = <u>2.303</u> x 0.6021 min 0.03	
t = 46.22 min	1