SET-1 ### **Series SSO** ### कोड नं. Code No. 65/1/MT | रोल नं. | | | | | |----------|--|--|--|--| | Roll No. | | | | | परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Code on the title page of the answer-book. - कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं । - प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। - कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं। - कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें । - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-प्स्तिका पर कोई उत्तर नहीं लिखेंगे । - Please check that this question paper contains 11 printed pages. - Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. - Please check that this question paper contains **26** questions. - Please write down the Serial Number of the question before attempting it. - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. # गणित ### **MATHEMATICS** निर्धारित समय : 3 घण्टे अधिकतम अंक : 100 Time allowed: 3 hours Maximum Marks: 100 ### सामान्य निर्देश: - (i) सभी प्रश्न अनिवार्य हैं। - (ii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं। - (iii) खण्ड अ के प्रश्न 1 6 तक अति लघु-उत्तर वाले प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक निर्धारित है। - (iv) खण्ड ब के प्रश्न **7 19** तक दीर्घ-उत्तर I प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **4** अंक निर्धारित हैं। - (v) खण्ड स के प्रश्न **20 26** तक दीर्घ-उत्तर II प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **6** अंक निर्धारित हैं। - (vi) उत्तर लिखना प्रारम्भ करने से पहले कृपया प्रश्न का क्रमांक अवश्य लिखिए। #### General Instructions: - (i) **All** questions are compulsory. - (ii) Please check that this question paper contains 26 questions. - (iii) Questions 1 6 in Section A are very short-answer type questions carrying 1 mark each. - (iv) Questions **7 19** in Section B are long-answer I type questions carrying **4** marks each. - (v) Questions **20 26** in Section C are long-answer II type questions carrying **6** marks each. - (vi) Please write down the serial number of the question before attempting it. ### खण्ड अ ### **SECTION A** प्रश्न संख्या 1 से 6 तक प्रत्येक प्रश्न का 1 अंक है। Question numbers 1 to 6 carry 1 mark each. - 1. एक 3×3 विषम सममित आव्यूह लिखिए । Write a 3×3 skew symmetric matrix. - 2. निम्न अवकल समीकरण के लिए इसकी कोटि व घात का गुणनफल ज्ञात कीजिए : $$x\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 + y^2 = 0$$ Find the product of the order and degree of the following differential equation: $$x\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 + y^2 = 0$$ 3. $y = A \cos \alpha x + B \sin \alpha x$, जहाँ A और B स्वेच्छ अचर हैं, के लिए एक अवकल समीकरण लिखिए। Write a differential equation for $y = A \cos \alpha x + B \sin \alpha x$, where A and B are arbitrary constants. - 4. सिदश $2\hat{i} + 3\hat{j} \hat{k}$ का सिदश $\hat{i} + \hat{j}$ के अनुदिश प्रक्षेप लिखिए । Write the projection of vector $2\hat{i} + 3\hat{j} \hat{k}$ along the vector $\hat{i} + \hat{j}$. - 5. $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ का मान लिखिए । Write the value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j}).$ - 6. समतल 3x + 4y + 12z = 52 के अभिलम्ब के दिक्-कोसाइन लिखिए। Write the direction cosines of the normal to the plane 3x + 4y + 12z = 52. #### खण्ड ब #### **SECTION B** प्रश्न संख्या ७ से 19 तक प्रत्येक प्रश्न के ४ अंक हैं। Question numbers ७ to 19 carry 4 marks each. 7. तीन परिवारों A, B तथा C में पुरुषों, महिलाओं और बच्चों की संख्या इस प्रकार है : | | पुरुष | महिलाएँ | बच्चे | |----------|-------|---------|-------| | परिवार A | 2 | 3 | 1 | | परिवार B | 2 | 1 | 3 | | परिवार C | 4 | 2 | 6 | एक पुरुष, महिला और बच्चे का प्रतिदिन खर्च क्रमश: ₹ 200, ₹ 150 व ₹ 200 है । सिर्फ पुरुष व महिलाएँ ही कमाते हैं, न कि बच्चे । आव्यूह की गुणा से प्रत्येक परिवार का खर्च ज्ञात कीजिए । परिवार में अधिक बच्चों के होने से समाज पर क्या असर पड़ता है ? There are 3 families A, B and C. The number of men, women and children in these families are as under: | | Men | Women | Children | |----------|-----|-------|----------| | Family A | 2 | 3 | 1 | | Family B | 2 | 1 | 3 | | Family C | 4 | 2 | 6 | Daily expenses of men, women and children are ₹ 200, ₹ 150 and ₹ 200 respectively. Only men and women earn and children do not. Using matrix multiplication, calculate the daily expenses of each family. What impact does more children in the family create on the society? 8. यदि $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}, x, y, z, > 0$ हो, तो xy + yz + zx का मान ज्ञात कीजिए । If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$, x, y, z, > 0, then find the value of xy + yz + zx. 9. यदि $$a \neq b \neq c$$ तथा $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$ हो, तो सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए कि $a + b + c = 0$. If $$a \neq b \neq c$$ and $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$, then using properties of determinants, prove that $a + b + c = 0$. 10. यदि $$X\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{pmatrix}$$ है, तो आव्यूह X ज्ञात कीजिए । ### अथवा आव्यूह $$A=\begin{pmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$$ का व्युत्क्रम ज्ञात कीजिए तथा दर्शाइए कि A^{-1} . $A=I$. If $$X\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{pmatrix}$$, then find the matrix X . ### OR Find the inverse of matrix $$A=\begin{pmatrix} 3 & -1 & 1\\ -15 & 6 & -5\\ 5 & -2 & 2 \end{pmatrix}$$ and hence show that $A^{-1}\cdot A=I.$ 11. यदि फलन $$f(x) = |x-3| + |x-4|$$ है, तो दर्शाइए कि $x = 3$ तथा $x = 4$ पर $f(x)$ अवकलनीय नहीं है । If function $f(x) = |x-3| + |x-4|$, then show that $f(x)$ is not differentiable at $x = 3$ and $x = 4$. 12. यदि $$y = x^{e^{-x^2}}$$ है, तो $\frac{dy}{dx}$ ज्ञात कीजिए। अथवा यदि $$\log \sqrt{x^2+y^2} = \tan^{-1}\left(\frac{x}{y}\right)$$ है, तो दर्शाइए कि $\frac{dy}{dx} = \frac{y-x}{y+x}$. If $$y = x^{e^{-x^2}}$$, find $\frac{dy}{dx}$. OR If $$\log \sqrt{x^2 + y^2} = \tan^{-1} \left(\frac{x}{y}\right)$$, then show that $\frac{dy}{dx} = \frac{y - x}{y + x}$. 13. यदि $$y = \sqrt{x+1} - \sqrt{x-1}$$ है, तो सिद्ध कीजिए कि $$(x^2 - 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - \frac{1}{4}y = 0.$$ If $$y = \sqrt{x+1} - \sqrt{x-1}$$, prove that $(x^2 - 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - \frac{1}{4}y = 0$. **14.** ज्ञात कीजिए : $$\int \frac{1-\cos x}{\cos x (1+\cos x)} dx$$ Find: $$\int \frac{1-\cos x}{\cos x (1+\cos x)} dx$$ 15. मान ज्ञात कीजिए: $$\int x \cdot \sin^{-1} x \, dx$$ Evaluate: $$\int x \cdot \sin^{-1} x \, dx$$ **16.** योगफल की सीमा के रूप में $$\int\limits_0^2 (x^2 + e^{2x+1}) \, dx$$ का मान ज्ञात कीजिए । #### अथवा मान ज्ञात कीजिए: $$\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \csc x} dx$$ Find $$\int_{0}^{2} (x^{2} + e^{2x+1}) dx$$ as the limit of a sum. ### OR Evaluate: $$\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \csc x} dx$$ 17. दर्शाइए कि रेखाएँ $$\frac{x-1}{3}=\frac{y-1}{-1}$$, $z+1=0$ और $\frac{x-4}{2}=\frac{z+1}{3}$, $y=0$ परस्पर काटती हैं । इनका प्रतिच्छेदन बिन्दु भी ज्ञात कीजिए । Show that the lines $\frac{x-1}{3}=\frac{y-1}{-1}$, $z+1=0$ and $\frac{x-4}{2}=\frac{z+1}{3}$, $y=0$ intersect each other. Also find their point of intersection. 18. माना बिन्दु $$P(3,2,6)$$ अन्तिरक्ष में है और बिन्दु Q रेखा $$\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu (-3\hat{i} + \hat{j} + 5\hat{k}) \text{ पर है } | \mu \text{ का मान ज्ञात कीजिए, जिससे}$$ सिंदश \overrightarrow{PQ} , समतल $x - 4y + 3z = 1$ के समान्तर हो | #### अथवा उस समतल का सिदश तथा कार्तीय समीकरण ज्ञात कीजिए जो बिन्दुओं (3, -2, 1) और (1, 4, -3) को जोड़ने वाली रेखा को एक समकोण पर समिद्धभाजित करता है। Let P(3, 2, 6) be a point in the space and Q be a point on the line $\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu (-3\hat{i} + \hat{j} + 5\hat{k})$, then find the value of μ for which the vector \overrightarrow{PQ} is parallel to the plane x - 4y + 3z = 1. #### OR Find the vector and cartesian equations of the plane which bisects the line joining the points (3, -2, 1) and (1, 4, -3) at right angles. 19. 1 से 100 तक की संख्या से लिखी एक 100 कार्डों की गड्डी से एक कार्ड यादृच्छया निकाला जाता है। प्रायिकता ज्ञात कीजिए कि इस कार्ड पर लिखी संख्या 6 या 8 से भाग हो सकती है, पर 24 से नहीं। From a set of 100 cards numbered 1 to 100, one card is drawn at random. Find the probability that the number on the card is divisible by 6 or 8, but not by 24. ### खण्ड स #### SECTION C प्रश्न संख्या 20 से 26 तक प्रत्येक प्रश्न के 6 अंक हैं। Question numbers 20 to 26 carry 6 marks each. **20.** सिद्ध कीजिए कि समुच्चय $A = \{1, 2, 3, 4, 5\}$ में $R = \{(a, b) : |a - b|, 2$ से भाज्य है} द्वारा प्रदत्त सम्बन्ध R एक तुल्यता सम्बन्ध है । प्रमाणित कीजिए कि $\{1, 3, 5\}$ के सभी अवयव एक दूसरे से सम्बन्धित हैं और समुच्चय $\{2, 4\}$ के सभी अवयव एक दूसरे से सम्बन्धित हैं, परन्तु $\{1, 3, 5\}$ का कोई भी अवयव $\{2, 4\}$ के किसी अवयव से सम्बन्धित नहीं है । Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a - b| \text{ is divisible by } 2 \}$ is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other, but no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$. **21.** समाकलन विधि से वक्र y = |x - 1| तथा y = 3 - |x| के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए। Using integration, find the area bounded by the curves y = |x - 1| and y = 3 - |x|. **22.** वक्र $y = \frac{x}{1+x^2}$ पर वह बिन्दु ज्ञात कीजिए जिस पर वक्र पर खींची गई स्पर्श रेखा की प्रवणता अधिकतम हो । Find the point on the curve $y = \frac{x}{1+x^2}$, where the tangent to the curve has the greatest slope. $$\mathbf{23.}$$ अवकल समीकरण $\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{y}^2}{\mathrm{xv} - \mathrm{x}^2}$ का व्यापक हल ज्ञात कीजिए । #### अथवा निम्न अवकल समीकरण को हल कीजिए, दिया है कि y=0, जब $x=\frac{\pi}{4}$ है : $$\sin 2x \frac{dy}{dx} - y = \tan x$$ Find the general solution of the differential equation $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$. ### OR Solve the following differential equation, given that y = 0, when $x = \frac{\pi}{4}$: $$\sin 2x \frac{dy}{dx} - y = \tan x$$ **24.** समतलों \overrightarrow{r} . $(\mathring{i} + \mathring{j} + \mathring{k}) = 6$ और \overrightarrow{r} . $(2\mathring{i} + 3\mathring{j} + 4\mathring{k}) = -5$ के प्रतिच्छेदन तथा बिन्दु (1,1,1) से जाने वाले समतल का सदिश समीकरण व कार्तीय समीकरण ज्ञात कीजिए। Find the vector and cartesian equations of the plane passing through the intersection of the planes $\overrightarrow{r} \cdot (\mathring{i} + \mathring{j} + \mathring{k}) = 6$ and $\overrightarrow{r} \cdot (2\mathring{i} + 3\mathring{j} + 4\mathring{k}) = -5$ and the point (1, 1, 1). 25. मान लीजिए किसी रोगी को दिल का दौरा पड़ने का संयोग 40% है। यह मान लिया जाता है कि ध्यान और योग विधि दिल का दौरा पड़ने के खतरे को 30% कम कर देती है और किसी दवा द्वारा खतरे को 25% कम किया जा सकता है। किसी भी समय रोगी इन दोनों में से किसी एक विकल्प का चुनाव कर सकता है तथा दोनों समप्रायिक हैं। यह दिया गया है कि उपर्युक्त विकल्पों में से किसी एक का चुनाव करने वाले रोगियों में से यादृच्छया चुना गया एक रोगी दिल के दौरे से ग्रसित हो जाता है। प्रायिकता ज्ञात कीजिए कि यह रोगी ध्यान और योग विधि का उपयोग करता है। Assume that the chances of a patient having a heart attack is 40%. It is also assumed that a meditation and yoga course reduces the risk of heart attack by 30% and the prescription of a certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. 26. एक व्यापारी केवल दो प्रकार की वस्तुओं – वस्तु A तथा वस्तु B का व्यापार करता है । उसके पास व्यापार में लगाने के लिए ₹ 50,000 हैं तथा अधिक-से-अधिक 60 वस्तुओं को रखने का स्थान है । वस्तु A का क्रय मूल्य ₹ 2,500 तथा वस्तु B का क्रय मूल्य ₹ 500 है । वस्तु A को बेचकर वह ₹ 500 शुद्ध लाभ कमाता है तथा वस्तु B को बेचकर वह ₹ 150 शुद्ध लाभ कमाता है । यदि खरीदी गई सभी वस्तुएँ वह बेच लेता है, तो उसे अपनी धनराशि से कितनी-कितनी वस्तुएँ खरीदनी चाहिए जिससे कि उसे अधिकतम लाभ प्राप्त हो सके ? इस प्रश्न को रैखिक प्रोग्रामन समस्या बनाकर ग्राफ द्वारा हल कीजिए । #### अथवा एक आहार-विज्ञानी दो भोज्यों X तथा Y का उपयोग करते हुए विशेष आहार तैयार करना चाहता है। भोज्य X का प्रत्येक पैकेट (जिसमें 30 ग्राम अन्तर्विष्ट है) में कैल्शियम के 12 मात्रक, लोह तत्त्व के 4 मात्रक, कोलेस्टेरॉल के 6 मात्रक तथा विटामिन A के 6 मात्रक अन्तर्विष्ट हैं। उसी मात्रा के भोज्य Y के प्रत्येक पैकेट में कैल्शियम के 3 मात्रक, लोह तत्त्व के 20 मात्रक, कोलेस्टेरॉल के 4 मात्रक तथा विटामिन A के 3 मात्रक अन्तर्विष्ट हैं। आहार में कैल्शियम के कम-से-कम 240 मात्रक, लोह तत्त्व के कम-से-कम 460 मात्रक तथा कोलेस्टेरॉल के अधिक-से-अधिक 300 मात्रक अपेक्षित हैं। प्रत्येक भोज्य के कितने-कितने पैकटों का उपयोग किया जाए तािक आहार में विटामिन A की मात्रा को न्यूनतम किया जा सके ? उपर्युक्त को एक रैखिक प्रोग्रामन समस्या बना कर ग्राफ द्वारा हल कीजिए। 65/1/MT 10 A dealer deals in two items only – item A and item B. He has $\neq 50,000$ to invest and a space to store at most 60 items. An item A costs $\neq 2,500$ and an item B costs $\neq 500$. A net profit to him on item A is $\neq 500$ and on item B $\neq 150$. If he can sell all the items that he purchases, how should he invest his amount to have maximum profit? Formulate an LPP and solve it graphically. ### OR A dietician wants to develop a special diet using two foods X and Y. Each packet (contains 30 g) of food X contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Y contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires at least 240 units of calcium, at least 460 units of iron and at most 300 units of cholesterol. Make an LPP to find how many packets of each food should be used to minimise the amount of vitamin A in the diet, and solve it graphically. 65/1/MT