Strictly Confi dential (For Internal and Restricted Lse on y) Seni or School Certificate Exa ni nation Marking Sche me - Physics (Code 55/1/1)

1. The marking sche ne provides general guid delines to reduce subjectivity inthe marking The ans wers gi veni int he marking sche me are suggested ans wers. The cont ent ist hus i ndi cated. If a st udent has gi ven any ot her ans wer, which is different fromthe one given in the marking sche me, but conveys the meani ng correctly, such answers should be gi ven full wei ghtage.
2. In val ue based questions, any ot her indi vi dual response with suitable justification should al so be accepted even if there is no reference to the text.
3. Eval uation is to be done as per instructions providedinthe marking schene. It should not be done accordingto one's own interpret ation or any ot her consi der ation. Marking sche me shoul d be adhered o and reli gi ousl y foll owed.
4. If a question has parts, please a wardinthe ri ght hand si de for each part. Marks a war ded for different part of the question shoul d then be totaled up and written int he left hand margin and circled
5. If a question does not have any parts, narks are to be awar dedinthe left hand margin only.
6. If a candi date has atte mpted an extra question, marks obt ai nedint he question atte mpted first should be retai ned and the ot her ans wer shoul d be scored out.
7. No marks are to be deducted for the cu mul ati ve effect of an error. The st udent should be penalized onl y once.
8. Deduct $1 / 2$ mark for writing wr ong units, nissing units, in the final ans wer to nu nerical problens.
9. For mul a can be taken as i mplied fromt he cal cul ations even if not explicitly written.
10. In short ans wer t ype question, asking for t wo feat ures/ characteristics/ properties if a candidate writes three feat ures, characteristics / properties or more, only the correct t no should be eval uated
11. Full marks should be a warded to a candidateif his/ her ans wer in a nu merical problemis cl ose t ot he val ue gi ven int he sche me.
12. In compliance t ot he j udgement of the Hon' ble Supreme Court of India, Board has deci ded to provi de phot ocopy of the ans wer book(s) to the candidates who will apply for it al ong with the requisite fee from2012 exa nination Therefore, it is all the more import ant that the eval uation is done strictly as per the value points giveninthe marking scheme sothat the Board could be in a positionto defend the eval uation at any forum
13. The Exa nin ner shall al so have to certify int he ans wer book that they have evaluated the ans wer book strictlyin accordance withthe val ue points givenin the marking sche me and correct set of question paper.
14. Every Exa miner shall al so ensure that all the ans wers are eval uated marks carried over to the title paper, correctly total ed and witten in fi gures and words.
15. Inthe past it has been observed that the following are the common types of errors committed by t he Exa niners

- Leavi ng ans wer or part thereof unassessed in an ans wer script.
- G ving more marks for an ans wer than assi gned toit α deviation fromt he marking sche me.
- We ong transference of narks fromthe insi de pages of the ans wer book tothe title page.
- Wi ong question wise totaling on the title page.
- Wr ong totaling of narks of the t wo col ums on the title page.
- We ong grand total.
- Marks in words and figures not tall ying.
- We ong transference to marks fromt he ans wer book to a ward list.
- Ans wer marked as correct () but marks not a warded
- Half or part of ans wer marked correct () and the rest as wrong () but no marks a warded

16. Any unassessed portion, non carrying over of marks tothe title page or totaling error detected by t he candidate shall da mage the prestige of all the personnel engaged int he eval uation work as also of t he Board. Њnce in or der to uphol dt he prestige of all concerned it is agai nreiterated that t he instructions be followed meticul ously and judici ously.
Del hi SET I Page 1 of 19
H NAL Print Daft
11/3/2013 11:30 am

MARK NG SCHE ME

SET 55/1/1

Q No.	Expected Ans wer / Value Points	Marks	Total Marks
1.	Subst ances, which at room te mperat ure, retain their ferromagnetic property for along period of ti ne are called per manent nagnets. Anico, cobalt, steel and ticonal(any one)	$1 / 2+1 / 2$	1
2.	Spherical	1	1
3.	Heat waves, as they are trans verse/el ectromagnetic in nat ure	$1 / 2+1 / 2$	1
4.	Magnitude of conduction \&di splace ment currents are zero	1	1
5.	$A+\delta_{m}=2 i$	1	1
6.	$(1,3)$ and (2,4$)$	$1 / 2+1 / 2$	1
7.	$i=\frac{V}{R}=\frac{190}{38}=5 A$ Award full 1 mark if st udent cal cul ates current directly	$1 / 2+1 / 2$	1
8.	Because the cell has some fi nite internal resistance./ Enf is deter mined when the cell is in open circuit and no current is drawn.	1	1
9.	Conditi ons $1 / 2+1 / 2$ Rel ati on 1 (a) i) Ray of light shoul d travel from denser to rarer medi um ii) Angle of inci dence shoul d be more than the critical angle. (b) $\mu=\frac{1}{\sin i_{c}}$ where i_{c} is the critical angle	$\begin{array}{\|l} 1 / 2 \\ 1 / 2 \end{array}$ 1	2
10.	St at e ment of lenz law 1 Enf and justification $1 / 2+1 / 2$ The pol arity of i nduced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it. Yes, as the magnetic flux due to vertical component of Earth's magnetic keeps on changing as the net allic rod falls down.	$\begin{array}{\|l} 1 \\ 1 / 2+1 / 2 \end{array}$	2
11.	Det er nin nation of po wer $11 / 2$ Nat ure $1 / 2$ Po wer of convex lens,	1/2	
	Del hi SET I Page 2 of 19 H NAL Print Daft 11/3/2013	$1: 30 \mathrm{am}$	

	Po wer of concave lens, Po wer of the co nbi nation $P=P_{1}+P_{2}=-1 D$ Nat ure: D ver ging	$1 / 2$ $1 / 2$ $1 / 2$	2
12.	(i) Val ue of Shunt Resist ance 1 (ii) Combi ned resistance 1 (i) Shunt $S=\frac{R_{A} i_{g}}{i-i_{g}}$ $=\frac{0.8 \times 1.0}{5.0-1.0}=0.2 \Omega$ (ii) Co mbi ned resistance of ammeter and shunt $\begin{aligned} \frac{1}{R_{\text {total }}} & =\frac{1}{R_{A}}+\frac{1}{S} \\ & =\frac{1}{0.8}+\frac{1}{0.2} \\ \mathrm{R}_{\text {total }} & =\frac{0.8}{5} \\ \Rightarrow R_{\text {total }}= & 0.16 \Omega \end{aligned}$	1/2	2
13.	(i) (ii) Effect on Bri ght ness of the bul b and reason Effect on volt neter readi ng and reason $1 / 2+1 / 2$ $1 / 2+1 / 2$ (i) Increases. As the val ue of the base current i ncreases, the collect or current will increase proportionatel y. (ii) Increases. Due toincrease in coll ector current, voltage drop across la mp will	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
14.	(a) Sketch of propagation (b) Rel ation		
	Del hi SET Page 3 of 19 H NAL Print Daft 11/3/2013	30	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(a) \\
[NOTE Accept the alternative choi ces indi cating the correct directions of the oscillating components of Eand B] \\
(b) \(\frac{E_{0}}{B_{0}}=c\)
\end{tabular} \& \(11 / 2\)

$1 / 2$ \& 2

\hline 15. \& | Identification of Xand Y $1 / 2+1 / 2$
 Function of Xand Y $1 / 2+1 / 2$ |
| :--- |
| X : IF stage |
| Y: Amplifier |
| The carrier frequency is changed to a lower frequency by inter medi ate frequency (IF) stage precedi ng the detection. It increases the strengt h of detect ed si gnal | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

$$
1 / 2
$$

$$
1 / 2
$$ \& 2

\hline 16. \& | Grcuit di agra mand worki ng $11 / 2$
 Its use to detect the optical si gnal $1 / 2$ |
| :--- |
| Grcuit di agra m of an illumi nated phot odi ode: | \& 1/2 \&

\hline \& Del hi SET P Page 4 of 19 H NAL Print Daft 11/3/2013 \& 1:30 \&

\hline
\end{tabular}

	When the phot odi ode is illuminated with radiations (phot ons) with energy $(h v)$ greater thant he energy gap ($E g$) of the se ni conduct or, then el ectron- hol e pairs are generated due to the absorption of phot ons. The junction fiel d sends the electrons to on-side and hol es to p -si de to produce the e mf. Hence current flo ws through the load when connected It is easier to observe the change in the current with change in the radiation intensity, if a reverse bias is applied Thus photodiode can be used as a phot odet ect or to det ect opti cal si gnal s. OR	1 $1 / 2$ $1 / 2+1 / 2$ 1	2
17.	I mport ant fact ors justifying the need of modul ation $11 / 2$ Di agramshowing how AM wave is obtai ned $11 / 2$ 1. Practical Size of the antenna or aerial 2 Effective po wer radi ated by an antenna 3. Mxing up of si gnals from different trans mitters \square		3
18.	(i) Cal cul ation of potential Vand unknown capacitance C 2 (ii) Gal cul ation of charge stored O 1		

Del hi
SET I
Page 5 of 19
H NAL Print Daft
11/3/2013
11:30 a m

Del hi SET I Page 10 of 19
H NAL Print Daft 11/3/2013 11:30 am

\begin{tabular}{|c|c|c|c|}
\hline 24. \& \begin{tabular}{l}
(a) Rel ati onshi p bet ween interference pattern and diffraction fromeach slit 1 \\
(b) Calculation of separation bet ween the position of first naxi ma of \(t\) no wa vel engt hs \\
a) In double slit experi ment, the pattern on the screen is act ually a super position of single slit defraction from each slit and double slit interference pattern As a result, there appears a broader diffraction peak in whi ch there occur several fringes of \(s\) maller wid hs due to double slit interference. \\
b) Dis stance of first secondary maxi mu mfromcentre of the screen
\[
\mathrm{x}=\frac{3}{2} \frac{D \lambda}{a}
\] \\
Therefore spacing bet ween first secondary maxima on the screen for two gi ven wavel engths
\[
\begin{aligned}
\Delta x \& =\frac{3 D}{2 a} \mathbf{C}_{2}-\lambda_{1}^{-} \\
\& =\frac{3 \times 1.5}{2 \times 2 \times 10^{-4}} 696-590^{-} \times 10^{-9} \\
\& =\frac{4.5 \times 6 \times 10^{-5}}{4} \\
\& =6.75 \times 10^{5} \mathrm{~m}
\end{aligned}
\]
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 25. \& \begin{tabular}{l}
Plot of variation of current with angul ar frequency \\
Definition of Q -factor and its si gnificance \\
Condition for resonance \(X_{L}=X_{C}\)
\end{tabular} \& 1

$1 / 2$ \&

\hline
\end{tabular}

	Resonance will be sharper for resistance R_{B} Si gnificance of Qfactor For large Qfact or, resonance will be sharper and therefore circuit will be more selective	$1 / 2$ $1 / 2$ $1 / 2$	3
26.	Four parts 1 mark for each part a) Because during thunder stor mcar woul d act as an el ectrostatic shi eld b) D. Pat hak di splayed values of safety of hu man life, hel pf ul ness, e mpat hy and scientific temper. (or any ot her t wo rel evant val ues) c) Gr at ef ul ness, i indebtedness (or any ot her rel evant val ue) d) Exa mple of any si milar action	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 \end{aligned}$	4
27.	(a) Ray diagra mshowi ng i mage for mation Deri vation of expression for magnification (b) Distinction bet ween myopi a and hyper metropia Correction of defects by diagram Magnification of objective $\mathrm{m}=\frac{h^{\prime}}{h}=\frac{L}{f_{0}}$ Angul ar magnification due to eyepi ece Tot al magnification when i mage is for ned at infinity	1 $1 / 2$ $1 / 2$	
	Del hi SET I Page 12 of 19 H NAL Print Daft 11/3/2013	$1: 30 \mathrm{am}$	

		Hy per met ropi a 1. Eyel ens focuses the i nco mi ng li ght behi nd reti na 2. The eye ball is shortened 3. Person cannot see nearby object s dearly. Hyper metropi a can be corrected by inter posi ng a convex lens bet ween eye and object draw, a ward full mark even if R $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1+1 \end{aligned}$ ch point of t he wavefront is the source wavelets emanating fromt hese points ed of the wave. Acommont angent to on of the wavefront at alater time.	$1 / 2+1 / 2$ $1 / 2+1 / 2$	5
	Del hi SET I Page 13 of 19	H NAL Print Daft 11/3/2013	30 am	

$$
\begin{aligned}
& \text { Here } \mathrm{r}_{1} \mathrm{Fr}_{2} \\
& \text { (Si nce the mo ment a of charged particles are equal and they have equal } \\
& \text { charge, theref ore they will descri be circular traject ories of sa me radi us) } \\
& \text { [If the candi date only mentions that they descri be circular traj ect ories wit hout } \\
& \text { the diagram, one mark shoul } d \text { be a war ded] } \\
& \text { (a) Execution of SHM of compass needle in magnetic field } \\
& \text { Deri vation of its ti ne period } \\
& \text { (b) Finding (i) horizontal component of earth's magnetic field (ii) angle } \\
& \text { of dip }
\end{aligned}
$$

(a) Tor que acting on the compass needle suspended freel yin a unifor m magnetic field

It will be bal anced by the rest oring tor que
For s nall ang e $\sin \theta \approx \theta$

In equilibirum, the resulting equation of motion

In magnitude $=M B \sin \theta$
$=-\mathrm{MB} \sin \theta$
[If the st udent just writes that the needle,
(i) When slightl $\overline{\overline{\mathrm{y}}} \mathrm{di}$ sturbed fromits stable position experiences a torque due to the magnetic field and
(ii) writes the expression for this torque,
\square

號

	Award (1 + 1 =2) marks]		
	(b) (i) Horizontal component of Earth's magnetic field d=0		
	(ii) The val ne of angle of dip at that place $=90^{\circ}$	1	1

\square

1	
1	5

\square
\square

