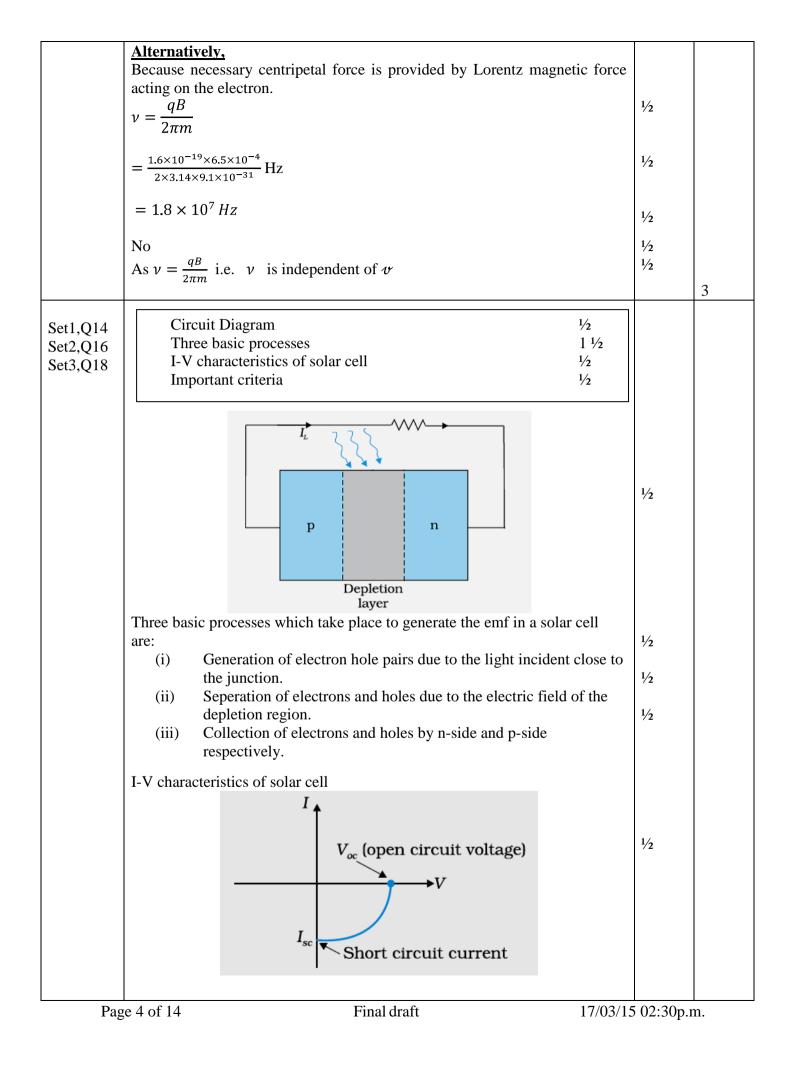
Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1,Q1	Capacitive	1/2	
Set2,Q5	Reason: As current leads voltage (by phase angle $\frac{\pi}{2}$)	1⁄2	1
Set3,Q2 Set1,Q2	X – Transmitter	1/2	1
Set1,Q2 Set2,Q4	Y - Channel	$\frac{72}{1/2}$	
Set3,Q5		/2	1
Set1,Q3	Focal length gets doubled.	1/2	1
Set2,Q2	Power is halved.	1/2	
Set3,Q4			1
Set1,Q4	Copper wire is longer.	1/2	
Set2,Q3	Reason: $\rho_C l_C = \rho_m l_m$ (as $\rho l = constant$)		
Set3,Q1	$\therefore l_c > l_m :: \rho_m > \rho_c$	1/2	
			1
Set1,Q5	Positive	1/2	
Set2,Q1	Reason: Negative charge moves from a point at a lower potential energy to	1/2	
Set3,Q3	one at a higher potential energy.		1
	Section B		1
Set1,Q6	Section B		
Set2,Q7	Definition of Power loss ¹ / ₂		
Set3,Q10	Form in which the power loss appear ^{1/2}		
	Proof- (To minimise power loss in transmission cables 1		
	Voltage should be high)		
	Electrical energy lost per second in the resistor, is Power loss		
	 Power loss appears in the form of heat/ e. m. radiations. 	$\frac{1}{2}$	
		1/2	
	Consider a device 'R', to which power P is to be delivered via transmission		
	cables having a resistance R_c , Let V be the voltage across 'R', and I be the		
	current through it, then		
	$P = V I$ $\therefore I = \frac{P}{V}$	1/2	
	Power dissipated in the cable $(P_c) = I^2 R_c$		
	$=\frac{P^2R_c}{r}$		
	V^2		
	$= \frac{P^2 R_c}{V^2}$ $\therefore P_c \propto \frac{1}{V^2}$	1/2	
	\therefore Energy transmission, at high voltage, minimizes the power loss.		2
Set1,Q7			2
Set2,Q10	Formula 1		
Set3,Q8	Calculation of kinetic energy 1		
, 🧨			

MARKING SCHEME SET 55/1/G

Page 1 of 14


Final draft

17/03/15 02:30p.m.

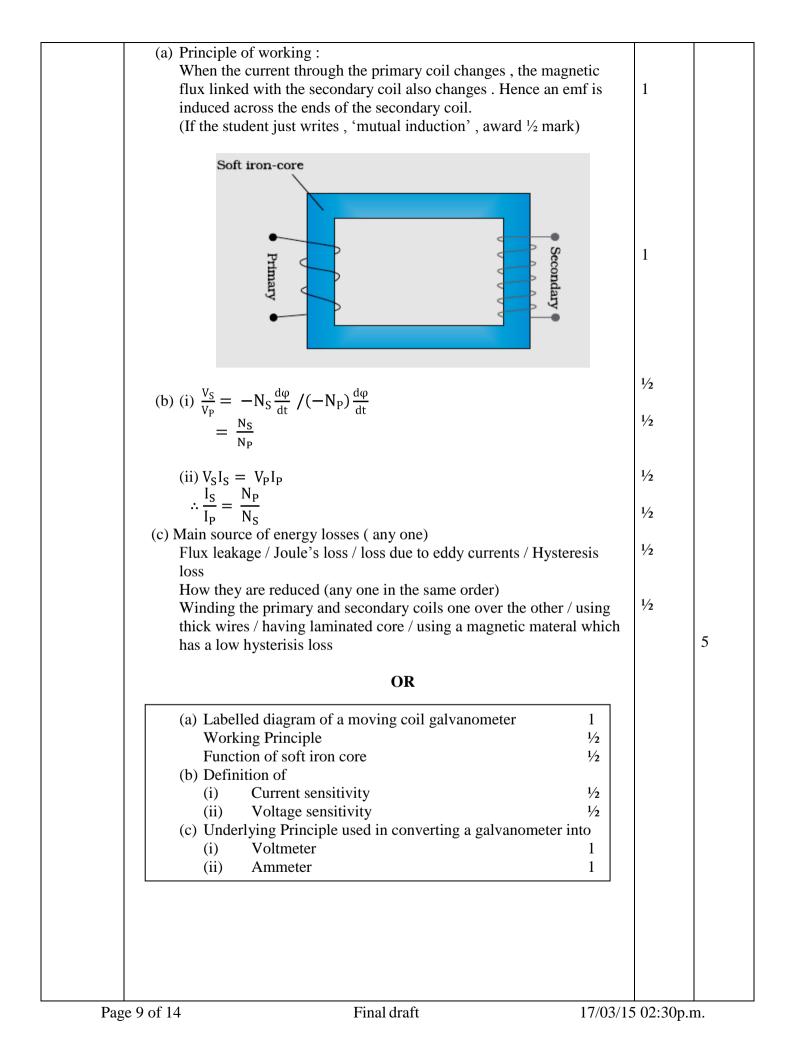
	h h	1/2	
	$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m E_k}}$	72	
	$\therefore \ \lambda^2 = \frac{h^2}{2m E_k}$ $E_k = \frac{(6.63 \times 10^{-34})^2}{2 \times 9.1 \times 10^{-31} \times (589 \times 10^{-9})^2} J$	1/2	
	$E_k = \frac{(6.63 \times 10^{-34})^2}{2 \times 9.1 \times 10^{-31} \times (589 \times 10^{-9})^2} J$	1⁄2	
	$= 6.95 \times 10^{-25} J$ Alternatively $E_k = 4.35 \ \mu \ eV$	1/2	2
Set1,Q8 Set2,Q6 Set3,Q9	Formula1/2Calculation & result1 1/2		
	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ (i) $\therefore \frac{1}{f} = \frac{1}{90 - u} - \frac{1}{-u} = \frac{1}{90 - u} + \frac{1}{u}$ (1) (ii) $\frac{1}{f} = \frac{1}{70 - u} - \frac{1}{-(u + 20)} = \frac{1}{70 - u} + \frac{1}{u + 20}$ (2)	1/2 1/2	
	Solving eq^n (1) and (2), u=35 cm	1⁄2	
	Using lens formula f = 21.4 cm (Alternatively if a candidate calculates the focal length by using the formula $4 f D = D^2 - d^2$, award full marks.)	1⁄2	2
Set1,Q9 Set2,Q8 Set3,Q7	(a) Value of Z1/2Value of A1/2(b) Explanation1		
	(a) Z= 56 A=89	1/2 1/2	
	 (b) Difference in the total mass of the nuclei on the two sides of the reaction gets converted into energy or vice versa <u>Alternatively.</u> 	1	
	The number is conserved but the B.E./ nucleon can be different for different nuclei.		2
Set1,Q10 Set2,Q9	Explanation (4 steps) $\frac{1}{2} \times 4=2$		
Set3,Q6	 Mobile telephony takes place in following ways: (i) Physical area is divided into smaller cell zones. (ii) Radio antenna in each cell receives and transmits radio signals, to and from, mobile phones. 	1/2 1/2	
	(iii) These radio antenna are connected to each other through a network. (Controlled and managed by a central control room called Mahila Talamhana Switching Office (MTSO))	1⁄2	
	 called Mobile Telephone Switching Office (MTSO)) (iv) MTSO records the location and identifies the cell of the mobile phone. 	1⁄2	2

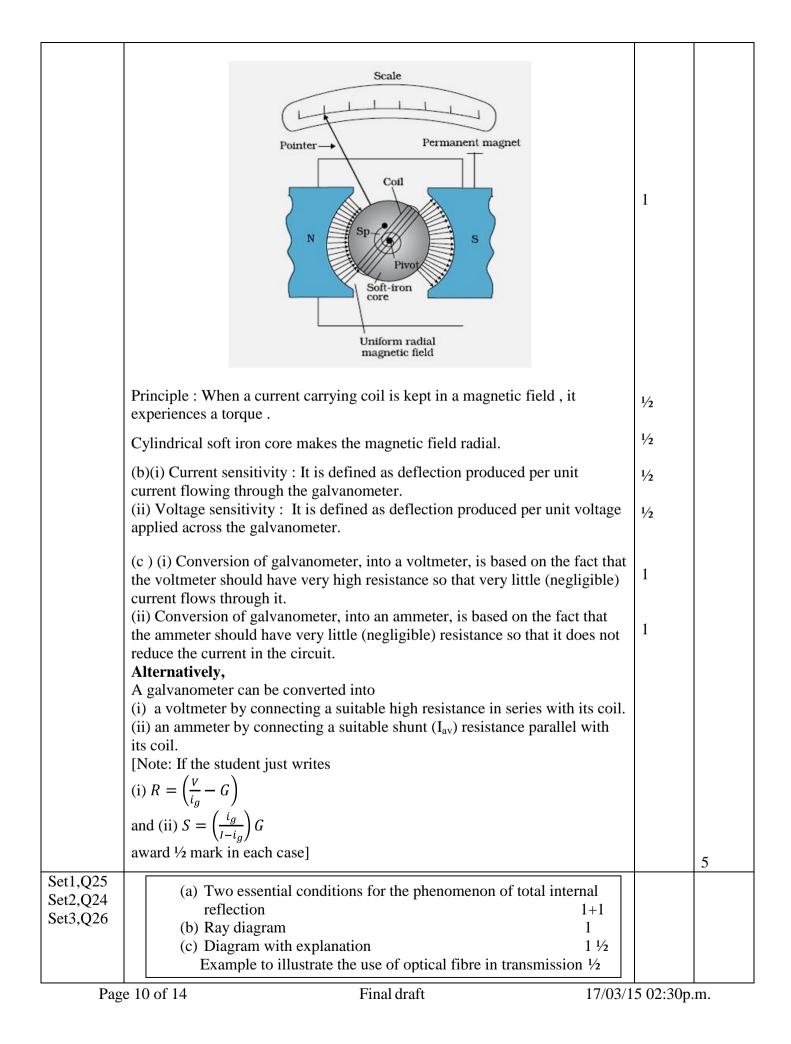
17/03/15 02:30p.m.

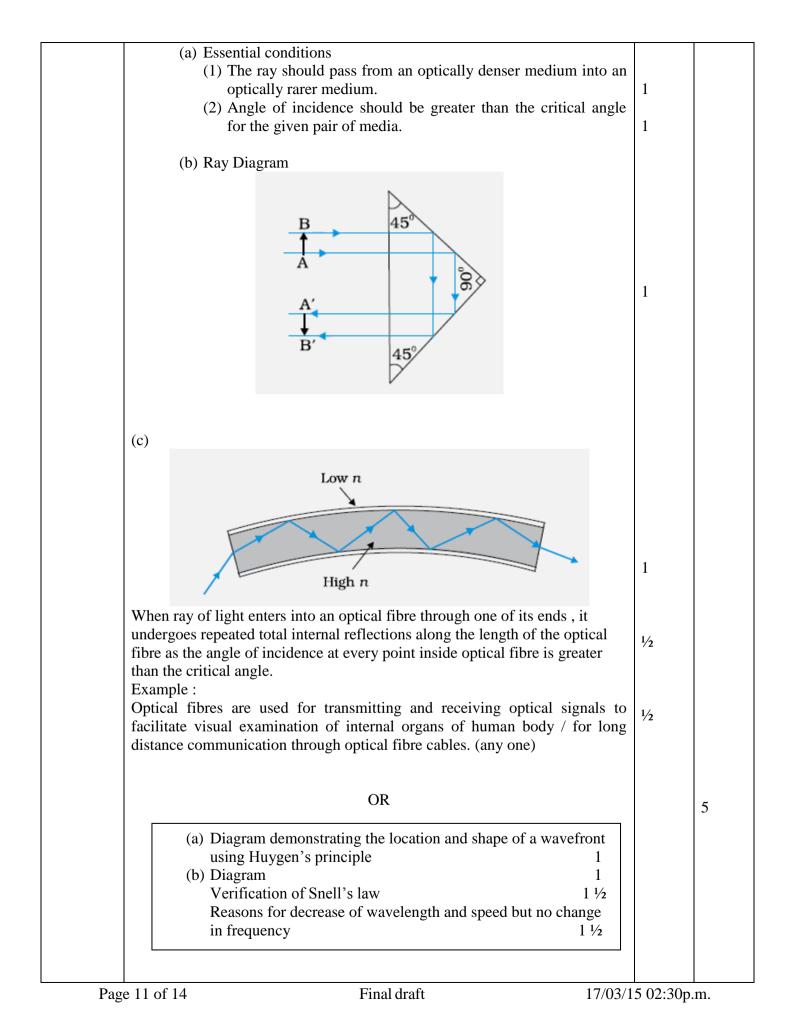
	OR		
	Basic mode of communication1/2Type of mode1Expression for d1/2		
	Line of sight / Broadcast Space wave $d = \sqrt{2Rh_1} + \sqrt{2Rh_2}$, R is radius of earth (Also accept if the student writes $d \propto \sqrt{h}$)	1/2 1 1/2	
	Section C		2
Set1,Q11			
Set2,Q20 Set3,Q15	(a) Equivalent capacitance1(b) Charge on each capacitor1+1		
	(a) Equivalent capacitance (C _n) = $\frac{C}{3} + C$ = $\frac{4C}{3} = \frac{40}{3} \mu F$	1/2 1/2	
	(b) Charge on C ₄ , $q_4 = C_4 \times V = 10 \times 500 \ \mu C$ =5×10 ⁻³ C=5mC	1/2 1/2	
	Charge on C ₁ ,C ₂ ,C ₃ is same and is equal to $\frac{C}{3} \times V$ = $\frac{5}{3} \times 10^{-3}C$	1⁄2	
	=1.67 mC	1⁄2	3
Set1,Q12 Set2,Q21 Set3,Q16	Current drawn from the source1P.D across C and D1P.D across one of the diagonals1		
	Net resistance of the circuit, $R_{eq} = 3 \Omega$ \therefore Current, $I = \frac{V}{R_{eq}} = \frac{9}{3} = 3 A$	1/2 1/2	
	P.D across CD, $V_{CD} = I_{CD} \times R_{CD}$ = $\left(3 \times \frac{1}{4}A\right) \times 4\Omega = 3V$	1/2	
	When the wire is stretched to double its length, each resistance becomes four times, i.e. 16Ω each.	1/2 1/2	
	P.D across one of the diagonal, V_{AC} or $V_{BD} = \left(\frac{9}{12} \times \frac{1}{4}A\right) \times 32\Omega = 6$ V	1⁄2	3
Set1,Q13 Set2,Q22 Set3,Q17	Path of the electron1/2Determination of frequency of revolution1 1/2Dependence of frequency on speed1/2Explanation / Reason1/2		
	The force, on the electron, due to the magnetic field, at any instant is perpendicular to its instanteneous velocity.	1⁄2	
Pa	ge 3 of 14 Final draft 17/03/15	5 02:30p	 m

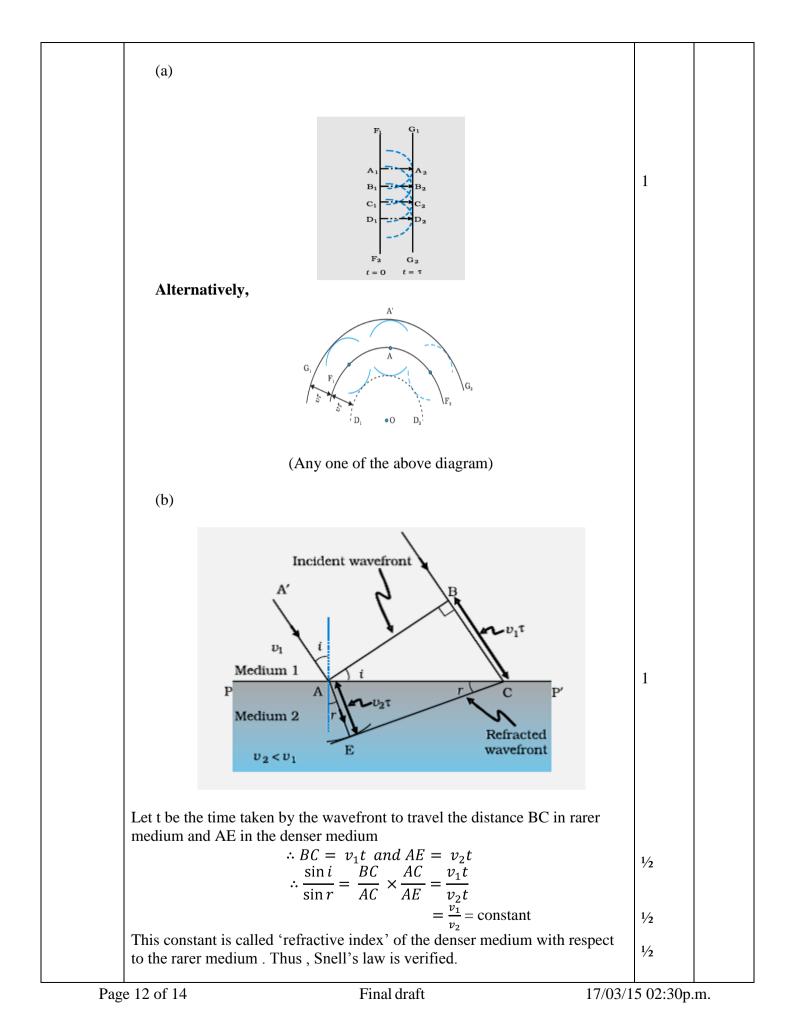
	Any one criteria of the following:(i)Small band gap (1.0 to 1.8 eV(ii)High optical absorption(iii)Electrical conductivity(iv)Availability of raw material(v)Cost	/)	1/2	
		OR		3
	Fabrication of LED Working Three advantages of LEDs An LED is fabricated from a semiconduc LEDs of different colours are made from Working When LED is forward biased, the electrom p→n; thus concentration of minority charge Excess minority charge carriers combine the junction and release energy as photon Advantages (Any three) (i) Low operational voltage and (ii) Fast action and no warm-up t (iii) The bandwidth of emitted light words, it is nearly (but not extended light words, it is nearly (but not extended light words)	$\frac{1/2}{1}$ 1 1 1/2 ctor having a band gap ≥ 1.8 eV / n compound semiconductors. ons move from n→p and holes from arge carriers at the junction increase with majority charge carriers near ns. less power ime required. ht is 100Å to 500 Å or, in other		
	(v) Fast on-off switching capabil	ity		3
Set1,Q15 Set2,Q17 Set3,Q11	1)Equally spaced fringes12)All maxima have equal2brightness23)Formed by superposition of3wavefronts from two coherent3sourcesf4)There is a maxima at the4angle λ/a a5)Quite a large number of5fringes are easily observable6	distinguishing features. 3 Diffraction 1)Fringes are not equally spaced 2)Intensity of maxima keeps on decreasing 3)Formed through superposition of wavelets from a single wavefront 4)First minima occurs at an angle λ/a 5)It becomes difficult to distinguish maxima and minima after a few fringes	1×3	
	(Any three)			

Pag	ge 6 of 14 Final draft 17/03/15	5 02:30p.	m.
	Explanation 1 Block Diagram Image: Square state	1	
Set2,Q11 Set3,Q14	Block Diagram / Explanation of AM1Can AM wave be transmitted as such1Explanation1		
Set1,Q18	1 0 1 1 1 1 NAND gate is called universal gate because all other basic gates like AND, OR, NOT gate, can be realised by using NAND gates only.	1	3
	Truth table of NAND GateABY001011	1	
	ABOutput of AND gate (Input of NOT gate)Output of NOT gate0001010110011110	1	
Set1,Q17 Set2,Q19 Set3,Q13	Showing that AND gate followed by NOT gate is NAND gate1Truth table of NAND gate1Why is NAND gate called universal gate?1		
	$= -\frac{e^2}{4\pi\epsilon_o r_n}$	1/2	3
	$\therefore E_k = \frac{1}{2} m v_n^2 = \frac{c}{8\pi\epsilon_o r_n}$ $\therefore E_p = \frac{1}{4\pi\epsilon_o} \frac{(+e) \times (-e)}{r}$	1 1⁄2	
	orbit of radius 'r _n ', with velocity v _n , in the hydrogen atom (z=1), we have $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\varepsilon_o} \frac{e^2}{r_n^2}$ $\therefore E_k = \frac{1}{2} mv_n^2 = \frac{e^2}{8\pi\varepsilon_o r_n}$ $\therefore E_p = \frac{1}{4\pi\varepsilon_o} \frac{(+e) \times (-e)}{r_n}$ $= -\frac{e^2}{4\pi\varepsilon_o r_n}$	1/2 1/2	
Set3,Q12	Relation for P.E 1 For an electron (mass 'm' and charge 'e') revolving in n th stable circular		
Set1,Q16 Set2,Q18	Expression for K.E 2		

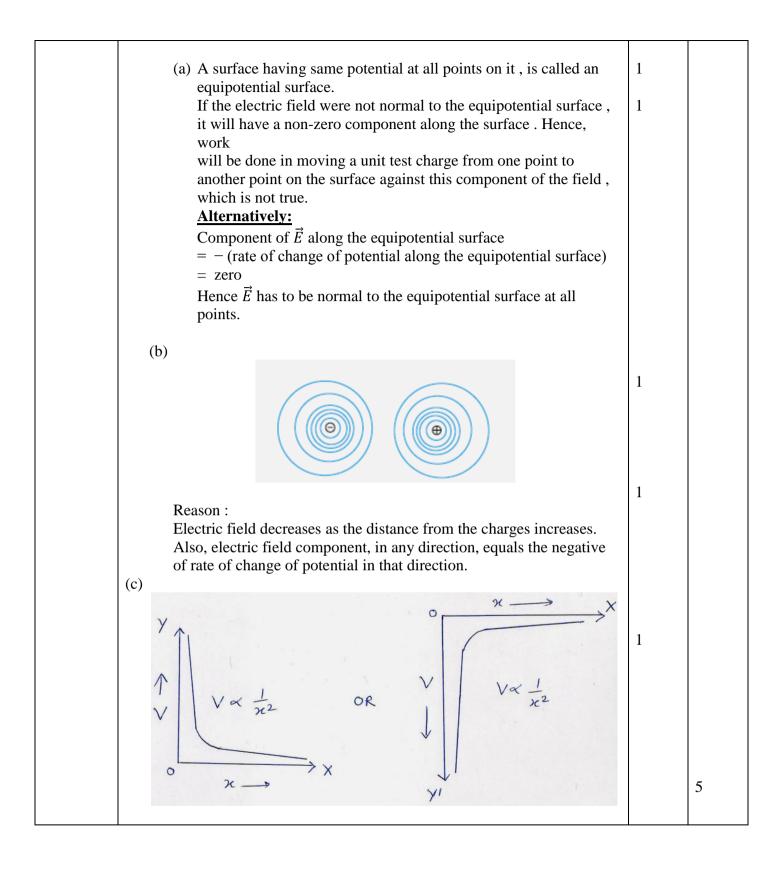

$ \begin{array}{ c c c c c } \hline No / AM wave cannot be transmitted as such \\ \hline Explanation \\ The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 \\ \hline The A.M. wave has to be fed to power amplifier to provide the necessary power. It is the fed to the antenna for transmission. 1 \\ \hline The A.M. Wave for the formula for the target power of the formula for transmission. 1 \\ \hline The A.M. Wave formula for the target power of the target power of the formula for transmission. 1 \\ \hline The A.M. Wave formula for the target power of the target power of the target power of the target power of target power of the target power of target power of the target power of target power$		Alternatively, Explanation of Amplitude Modulation		
$\begin{array}{ c c c c c } \hline \textbf{Explanation} \\ The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission. 1 3 \\ \hline \textbf{Set1,Q19} \\ Set2,Q12 \\ Set3,Q21 \end{array} \left[\begin{array}{c} (a) Formula & 1 \\ Calculation of number of photons per second & 1 \\ (b) Identification of Metal & \frac{1}{12} \\ Reason/explanation & \frac{1}{12} \\ \hline \textbf{(a) } P = Nhv \\ N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})} \\ N = 5.0 \times 10^{15} photons per second \\ \hline \textbf{(b) Metal X} \\ (K.E = hv - \phi_o) / \because \phi_y > \phi_x, \because (K.E)_x > (K.E)_y \end{array} \right] \left[\begin{array}{c} \textbf{(a) Formula} \\ \textbf{(b) Metal X} \\ (K.E = hv - \phi_o) / \because \phi_y > \phi_x, \because (K.E)_x > (K.E)_y \end{array} \right] \left[\begin{array}{c} \textbf{(a) Formula} \\ \textbf{(b) Metal X} \\ (Calculation and Result \\ \textbf{(b) Formula} \\ \textbf{(b) Formula} \\ \textbf{(b) Formula} \\ \textbf{(c) Calculation and Result \\ \textbf{(b) Formula} \\ \textbf{(c) Calculation and Result \\ \textbf{(c) Details} \\ \textbf{(c) 10} \frac{\partial a}{D} = \frac{2}{a} \\ \textbf{(c) 10} \frac{\partial a}{D} = \frac{2}{b} \\ \textbf{(c) 10} \frac{\partial a}{D} = \frac{2}{a} \\ \textbf{(c) 10} \frac{\partial a}{D} = \frac{2}{b} \\ \textbf{(c) 10} \frac{\partial a}{D} = \frac{2}{b} \\ \textbf{(c) 10} \frac{\partial a}{D} = 2 \\ \textbf{(c) 10} \frac{\partial a}{D} \\ \textbf{(c) 10} \frac{\partial a}{D} = 2$			1	
The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission.13Set1,Q19 Set2,Q12 Set3,Q21(a) Formula Calculation of number of photons per second (b) Identification of Metal Reason/explanation13(a) $P = Nhv$ $N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ $N = 5.0 \times 10^{15}$ photons per second11(b) Metal X (K.E = hv - ϕ_0) / $\because \phi_y > \phi_x$, $\because (K.E)_x > (K.E)_y$ 11/2(a) Formula Calculation and Result11/2(b) Formula Calculation and Result11/2(a) $\Delta \theta = \frac{1.223}{D}$ $= \frac{1.228540^{-7}}{2.5}$ radian $= 2.9 \times 10^{-7}$ radian1/21/2(b) $10\frac{\Delta \theta}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1}$ 1/21/2(a) Derivation for induced emf21				
power. It is then fed to the antenna for transmission.13Set1,Q19 Set2,Q12(a) Formula Calculation of number of photons per second (b) Identification of Metal Reason/explanation11(b) Identification of Metal Reason/explanation111(a) $P = Nhv$ $N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ $N = 5.0 \times 10^{15}$ photons per second11(b) Metal X (K. E = hv - ϕ_0) / \because $\phi_y > \phi_x$, \because (K. E)_x > (K. E)_y11(c) Performula (b) Metal X (K. E = hv - ϕ_0) / \because $\phi_y > \phi_x$, \because (K. E)_x > (K. E)_y3Set1,Q20 Set2,Q13 Set3,Q22(a) Formula (b) Formula (calculation and Result (b) Formula (calculation and Result (calculation and Result		-		
Set1,Q20 Set2,Q12 Set3,Q21(a) Formula Calculation of number of photons per second (b) Identification of Metal Reason/explanation1 <b< td=""><td></td><td></td><td>1</td><td></td></b<>			1	
Set2,Q12 (a) Formula 1 Set3,Q21 (b) Identification of Number of photons per second 1 (b) Identification of Metal $\frac{1}{22}$ (a) $P = Nhv$ 1 $N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ 1 $N = 5.0 \times 10^{15}$ photons per second 1/2 (b) Metal X $(K.E = hv - \phi_o) / \because \phi_y > \phi_x, \because (K.E)_x > (K.E)_y$ 1/2 Set1,Q20 (a) Formula 1/2 (a) $\Delta\theta = \frac{1.22\lambda}{D_0}$ V_2 3 (b) Iotal 1 1 (c) Set2,Q13 (a) Formula 1/2 (b) Formula 1/2 1 (a) $\Delta\theta = \frac{1.22\lambda}{D_0}$ 1 (b) Formula 1 (c) $\Delta \theta = \frac{1.22\lambda}{D_0}$ 1 (a) $\Delta \theta = \frac{1.22\lambda}{D_0}$ 1 (b) $10\frac{\lambda D}{a} = 2\frac{\lambda}{a}$ 1 (c) $10\frac{\lambda D}{a} = 2\frac{\lambda}{a}$ 1 (b) $10\frac{\lambda D}{a} = 2\frac{\lambda}{a}$ 1 (c) $10\frac{\lambda D}{a} = 2\frac{\lambda}{a}$ 1 (d) $10\frac{\lambda D}{a} = 2\lambda n^2$ 1 (e) $10\frac{\lambda D}{a} = 2\lambda n^2$ 1 (f) $10\frac{\lambda D}{a} = 2\lambda n^2$ 3 Set1,Q21 (a) D				3
Set 2, Q12 Set 3, Q21 Calculation of number of photons per second (b) Identification of Metal (c) Identification (c) Iden	Set1,Q19			
Set 3.Q21 (b) Identification of Metal $\frac{1}{2}$ Reason/explanation $\frac{1}{2}$ (a) $P = Nhv$ $N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ $\frac{1}{1}$ $N = 5.0 \times 10^{15}$ photons per second $\frac{1}{2}$ (b) Metal X (K. $E = hv - \phi_0$) / $\because \phi_y > \phi_x$, $\because (K. E)_x > (K. E)_y$ $\frac{1}{2}$ Set 1.Q20 Set 2.Q13 Set 3.Q22 (a) Formula $\frac{1}{2}$ Calculation and Result 1 (b) Formula $\frac{1}{2}$ Calculation and Result 1 (a) $\Delta \theta = \frac{1.22\lambda}{D}$ radian $\frac{1}{2}$ $\simeq 2.9 \times 10^{-7}$ radian $\frac{1}{2}$ (b) $10\frac{\Delta \theta}{d} = 2\frac{\lambda}{a}$ $\frac{1}{5 \times 1}m$ $\frac{1}{2}$ $= 2 \times 10^4$ m=0.2 mm $\frac{1}{2}$	Set2,Q12			
Reason/explanation ½ (a) $P = Nhv$ 1 $N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ ½ $N = 5.0 \times 10^{15} photons per second$ ½ (b) Metal X ½ $(K, E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K, E)_x > (K, E)_y$ ½ Set1,Q20 (a) Formula ½ (b) Formula ½ (calculation and Result 1 (b) Formula ½ (a) $\Delta \theta = \frac{1.22\lambda}{D}$ ½ (a) $\Delta \theta = \frac{1.22\lambda}{D}$ ½ (b) $10\frac{\Delta b}{a} = 2\frac{\lambda}{a}$ ½ (b) $10\frac{\Delta b}{a} = 2\frac{\lambda}{a}$ ½ (b) $10\frac{\Delta b}{a} = 2\frac{\lambda}{a}$ ½ (c) $10\frac{\Delta b}{a} = 2\frac{\lambda}{a}$ ½ (c) 2×10^{-4} m=0.2 mm ½ Set1,Q21 (a) Derivation for induced emf 2	Set3,Q21			
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $				
$N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ $N = 5.0 \times 10^{15} \text{ photons per second}$ (b) Metal X $(K.E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K.E)_x > (K.E)_y$ 3 Set1,Q20 (a) Formula (b) Formula (b) Formula (c) Calculation and Result (c) Formula (c) Formula (c) Calculation and Result (c) Formula (c) Formula (c) Calculation and Result (c) Calculation (c) Calculat				
$N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ $N = 5.0 \times 10^{15} \text{ photons per second}$ (b) Metal X $(K.E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K.E)_x > (K.E)_y$ 3 Set1,Q20 (a) Formula (b) Formula (b) Formula (c) Calculation and Result (c) Formula (c) Formula (c) Calculation and Result (c) Formula (c) Formula (c) Calculation and Result (c) Calculation (c) Calculat		(a) $\mathbf{D} = \mathbf{N}\mathbf{h}\mathbf{u}$		
$N = 5.0 \times 10^{15} \text{ photons per second}$ (b) Metal X (K. E = hv - ϕ_0) / $\because \phi_y > \phi_x$, $\because (K. E)_x > (K. E)_y$ (b) Metal X (K. E = hv - ϕ_0) / $\because \phi_y > \phi_x$, $\because (K. E)_x > (K. E)_y$ (cloudation and Result 1 (cloud			1	
$N = 5.0 \times 10^{15} \text{ photons per second}$ (b) Metal X (K. E = hv - ϕ_0) / $\because \phi_y > \phi_x$, $\because (K. E)_x > (K. E)_y$ (b) Metal X (K. E = hv - ϕ_0) / $\because \phi_y > \phi_x$, $\because (K. E)_x > (K. E)_y$ (cloudation and Result 1 (cloud		$N = \frac{2 \times 10^{-5}}{10^{-5}}$	1/	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$(5) \text{ Hour } H$ $(K, E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K, E)_x > (K, E)_y$ $(K, E)_y$ $(K, E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K, E)_x > (K, E)_y$ $(a) \text{ Formula } 1$ $(b) \text{ Formula } 1$ $(b) \text{ Formula } 1$ $(b) \text{ Formula } 1$ $(a) \Delta \theta = \frac{1.22\lambda}{D}$ $(b) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $(b) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $(b) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $(c) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{$		$N = 5.0 \times 10^{15}$ photons per second	1/2	
$(5) \text{ Hour } H$ $(K, E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K, E)_x > (K, E)_y$ $(K, E)_y$ $(K, E = hv - \phi_0) / \because \phi_y > \phi_x, \because (K, E)_x > (K, E)_y$ $(a) \text{ Formula } 1$ $(b) \text{ Formula } 1$ $(b) \text{ Formula } 1$ $(b) \text{ Formula } 1$ $(a) \Delta \theta = \frac{1.22\lambda}{D}$ $(b) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $(b) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $(b) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $(c) 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{$		(b) Motol V	1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Set1,Q20 Set2,Q13 Set3,Q22(a) Formula Calculation and Result $\frac{1}{2}$ 1(a) $\Delta\theta = \frac{1.22\lambda}{D}$ $= \frac{1.22\times6\times10^{-7}}{2.5}$ radian $\simeq 2.9 \times 10^{-7}$ radian $\frac{1}{2}$ (b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5\times1}$ m $= 2\times10^4$ m=0.2 mm $\frac{1}{2}$ Set1,Q21 Set2,Q14(a) Derivation for induced emf2		$(K.E = nv - \varphi_0) / \because \varphi_y > \varphi_x, \therefore (K.E)_x > (K.E)_y$	12	
Set1,Q20 Set2,Q13 Set3,Q22(a) Formula Calculation and Result $\frac{1}{2}$ 1(a) $\Delta\theta = \frac{1.22\lambda}{D}$ $= \frac{1.22\times6\times10^{-7}}{2.5}$ radian $\simeq 2.9 \times 10^{-7}$ radian $\frac{1}{2}$ (b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5\times1}$ m $= 2\times10^4$ m=0.2 mm $\frac{1}{2}$ Set1,Q21 Set2,Q14(a) Derivation for induced emf2				3
Set1,Q13 Set2,Q13 Set3,Q22 Calculation and Result (b) Formula Calculation and Result (c) Formula (c) Formula Calculation and Result (c) Formula (c) Fo				-
Set2,Q13 Set3,Q22 Calculation and Result 1 (b) Formula 1/2 Calculation and Result 1 (a) $\Delta\theta = \frac{1.22\lambda}{D}$ $= \frac{1.22\times6\times10^{-7}}{2.5}$ radian 1/2 $\simeq 2.9 \times 10^{-7}$ radian 1/2 (b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5\times1}$ m 1/2 $= 2\times10^4$ m=0.2 mm 1/2 Set1,Q21 Set2,Q14 (a) Derivation for induced emf 2	Set1,Q20			
Set 1, Q22 Calculation and Result 1 (a) $\Delta \theta = \frac{1.22\lambda}{D}$ $= \frac{1.22\times6\times10^{-7}}{2.5}$ radian $\simeq 2.9 \times 10^{-7}$ radian (b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5\times1}$ m $= 2\times10^{-4}$ m=0.2 mm Set 1, Q21 Set 2, Q14 (a) Derivation for induced emf 2				
(a) $\Delta\theta = \frac{1.22\lambda}{D}$ $= \frac{1.22\times6\times10^{-7}}{2.5} radian$ $\simeq 2.9 \times 10^{-7} radian$ (b) $10\frac{\lambda D}{a} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1} m$ $= 2\times10^{-4} \text{ m}=0.2 \text{ mm}$ (a) Derivation for induced emf 2	-			
(a) $\Delta b = \frac{1}{D}$ $= \frac{1.22 \times 6 \times 10^{-7}}{2.5}$ radian $\approx 2.9 \times 10^{-7}$ radian (b) $10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1}$ m $= 2 \times 10^{-4}$ m=0.2 mm Set1,Q21 Set2,Q14 (a) Derivation for induced emf 2		Calculation and Result 1		
(a) $\Delta b = \frac{1}{D}$ $= \frac{1.22 \times 6 \times 10^{-7}}{2.5}$ radian $\approx 2.9 \times 10^{-7}$ radian (b) $10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1}$ m $= 2 \times 10^{-4}$ m=0.2 mm Set1,Q21 Set2,Q14 (a) Derivation for induced emf 2				
$\begin{array}{c c} = \frac{1.22 \times 6 \times 10^{-7}}{2.5} radian & \frac{1}{2} \\ \simeq 2.9 \times 10^{-7} radian & \frac{1}{2} \\ (b) \ 10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a} & \frac{1}{2} \\ a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1} m & \frac{1}{2} \\ = 2 \times 10^{-4} \text{ m} = 0.2 \text{ mm} & \frac{1}{2} \\ \end{array}$		(a) $\Delta \theta = \frac{1.22\lambda}{R}$	1/2	
$\approx 2.9 \times 10^{-7} radian$ (b) $10 \frac{\lambda D}{d} = 2 \frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1} m$ $= 2 \times 10^{-4} m = 0.2 mm$ Set1,Q21 Set2,O14 (a) Derivation for induced emf 2		$\frac{D}{1.22 \times 6 \times 10^{-7}}$ undirect		
(b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1} m$ $= 2 \times 10^{-4} \text{ m} = 0.2 \text{ mm}$ Set1,Q21 Set2,Q14 (a) Derivation for induced emf 2				
$\begin{array}{c c} =2\times10^{-4} \text{ m}=0.2 \text{ mm} & \frac{1/2}{3} \\ \hline Set1,Q21 \\ Set2,Q14 & \hline \text{(a) Derivation for induced emf} & 2 & \hline \end{array}$		$\simeq 2.9 \times 10^{-7}$ radian	1/2	
$\begin{array}{c c} =2\times10^{-4} \text{ m}=0.2 \text{ mm} & \frac{1/2}{3} \\ \hline Set1,Q21 \\ Set2,Q14 & \hline \text{(a) Derivation for induced emf} & 2 & \hline \end{array}$			1/-	
$\begin{array}{c c} =2\times10^{-4} \text{ m}=0.2 \text{ mm} & \frac{1/2}{3} \\ \hline Set1,Q21 \\ Set2,Q14 & \hline \text{(a) Derivation for induced emf} & 2 & \hline \end{array}$		(b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{d}$	72	
$\begin{array}{c c} =2\times10^{-4} \text{ m}=0.2 \text{ mm} & \frac{1/2}{3} \\ \hline Set1,Q21 \\ Set2,Q14 & \hline \text{(a) Derivation for induced emf} & 2 & \hline \end{array}$		$d 10^{-3}$	1/2	
$\begin{array}{c c} =2\times10^{-4} \text{ m}=0.2 \text{ mm} & \frac{1/2}{3} \\ \hline Set1,Q21 \\ Set2,Q14 & \hline \text{(a) Derivation for induced emf} & 2 & \hline \end{array}$		$a = \frac{1}{5D} = \frac{1}{5 \times 1} m$	12	
$\begin{array}{c c} =2\times10^{-4} \text{ m}=0.2 \text{ mm} & 3 \\ \hline \text{Set1,Q21} \\ \text{Set2,O14} & (a) \text{ Derivation for induced emf} & 2 \\ \end{array}$			1/2	
Set1,Q21 Set2,O14(a) Derivation for induced emf2		$=2\times10^{-4}$ m=0.2 mm	· -	3
Set2.014 (a) Derivation for induced emf 2	Set1,Q21			
	Set2,Q14			
Set3,Q19 (b) Expression for power 1	-	(b) Expression for power 1		
(a) Emf induced = $\int_0^l Bwr dr$ 1/2		(a) $\text{Emf induced} = \int_0^1 Bwrdr$	1/2	
$=\frac{1}{2}Bwl^2$		$=\frac{1}{2}Bwl^{2}$	1/	
			1/2	
$\therefore \omega = 2\pi \nu$		$\therefore \omega = 2\pi\nu$	1	
$\therefore \varepsilon = \pi B \nu l^2 $		$\therefore \varepsilon = \pi B \nu l^2$	1	
(b) $P = \frac{\epsilon^2}{R} = \frac{(\pi B \nu l^2)^2}{R}$ 1/2		(b) $P = \frac{\epsilon^2}{2} = \frac{(\pi B \nu l^2)^2}{2}$	1/2	
$\begin{bmatrix} R & R \\ \pi^2 R^2 \nu^2 l^4 \end{bmatrix}$		$\pi^2 R^2 \nu^2 l^4$	/2	
(b) $P = \frac{\epsilon^2}{R} = \frac{(\pi B \nu l^2)^2}{\frac{R}{2}}$ = $\frac{\pi^2 B^2 \nu^2 l^4}{R}$ 1/2 3		$=\frac{\pi D V U}{2}$	1/	
5		D	1/2	3


Final draft


17/03/15 02:30p.m.


Set1,Q22 Set2,Q15	Expression for generalized Ampere's Circuital law1Explanation of significance of time dependent term1		
Set3,Q20	Suitable Example 1		
	$\oint \vec{B} \cdot \vec{dl} = \mu_o i_c + \mu_o \varepsilon_o \frac{d\phi_E}{dt}$ $= \mu_o \left(i_c + \varepsilon_o \frac{d\phi_E}{dt} \right) = \mu_o (i_c + i_D)$	1	
	The time dependent term i.e. $\varepsilon_0 \frac{d\phi_E}{dt}$ represents the displacement current. It exists in the region in which the electric flux (ϕ_0) i.e. the electric field (\vec{E})	$\frac{1/2}{1/2}$	
	changes with time. Example- During charging or discharging of a capacitor, the current in the		
	wire connecting the capacitor plates to the source is conduction current whereas in between the plates it is displacement current due to the change of	1/2	
	electric field between the plates which makes the circuit complete.	1/2	
	The conduction current is always equal to the displacement current.	12	3
G (1.022	Section D		
Set1,Q23 Set2,Q23 Set3,Q23	a) Principle of a dynamo1Working of a dynamo1b) Two values displayed by Hari $\frac{1}{2} + \frac{1}{2}$ Two values displayed by Science teacher $\frac{1}{2} + \frac{1}{2}$		
	 (a) Principle When magnetic flux through a coil changes , an emf is induced across its ends. Working : 	1	
	 When the coil (Armature) is rotated in a uniform magnetic field by some external means , the magnetic flux through it changes . So an emf is induced across the ends of the coil connected to an external circuit by means of slip rings and brushes. (b) Two values displayed by Hari (Any two) 	1	
	Scientific temperament / curiosity / learning attitude / any other quality	1/2 + 1/2	
	Two values displayed by Science teacher (Any two) Responsive / caring and concerned / encouraging / any other quality	$\frac{1}{2} + \frac{1}{2}$	
			4
	Section E		4
Set1,Q24			
Set2,Q26 Set3,Q25	(a) Principle of working of a transformer1Labelled Diagram1		
	(b) Deducing expression for the ratio of (i) Output voltage to input voltage 1		
	(ii) Output current to input current 1		
	(c) One main source of energy loss1/2How is the energy loss reduced?1/2		

17/03/15 02:30p.m.



	Reason : If λ_1 and λ_2 denote the wavelengths of light in medium 1 and		
	medium 2, then if BC = λ_1 , AE = λ_2 λ_1 BC ν_1	1/2	
	$\frac{\lambda_1}{\lambda_2} = \frac{BC}{AE} = \frac{\nu_1}{\nu_2}$	1⁄2	
	$\operatorname{Or}_{\mathcal{V}_1} \mathcal{V}_2$		
	$\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$		
	This equation implies that when a wave gets refracted into a denser medium, its wavelength and speed decrease but its frequency (v/λ) remains the same.	1⁄2	5
Set1,Q26			
Set2,Q25 Set3,Q24	(a) Definition of Electric flux 1		
	S.I unit1/2(b) Formula for Electric flux1/2		
	Calculation and result for net flux 2		
	Formula and result for net charge $\frac{1}{2} + \frac{1}{2}$		
	(a) Definition : Total number of electric field lines passing perpendicularly through a	1	
	surface is called electric flux.	1	
	(Also accept: $\phi = \oint_{S} \vec{E} \cdot \vec{ds}$)		
	S.I unit of electric flux is Nm^2C^{-1}	1/2	
	(b)From $\phi = \phi \vec{E} \cdot \vec{ds}$		
	Net flux through the cube (Φ) = Net flux through the two faces of	1/	
	the cube (Perpendicular to X-axis + perpendicular to Y-axis + Perpendicular to Z-axis)	1/2	
	$\Phi = \phi_x + 0 + 0$ (As $\vec{E} \cdot \vec{ds}$ is (separately) zero for ($\vec{E} = \propto x \hat{i}$) for the faces perpendicular to the y and the z-axis)	1⁄2	
	$= EdS\cos 180^o + EdS\cos 0^o$	1/2	
	$= [\alpha(a)(-1) + \alpha(2a)]a^2$	1/2	
	(<u>Alternatively</u> : $[\propto (x)(-1)+\propto (a+x)(+1)]a^2$)		
	$= \alpha a^3$	1⁄2	
	Net charge inside cube (Q)= $\Phi\epsilon_0$		
	$= \alpha a^3 \epsilon_0$	1/2	
		1⁄2	5
	OR		
	(a) Definition of equipotential surface 1		
	Reason (Electric field directed normal to the surface) 1		
	(b) Diagram 1 Reason 1		
	(c) Plot of V versus X 1		
Dag		5 02:30p	 m
ı ag		5 02.50p	

Final draft