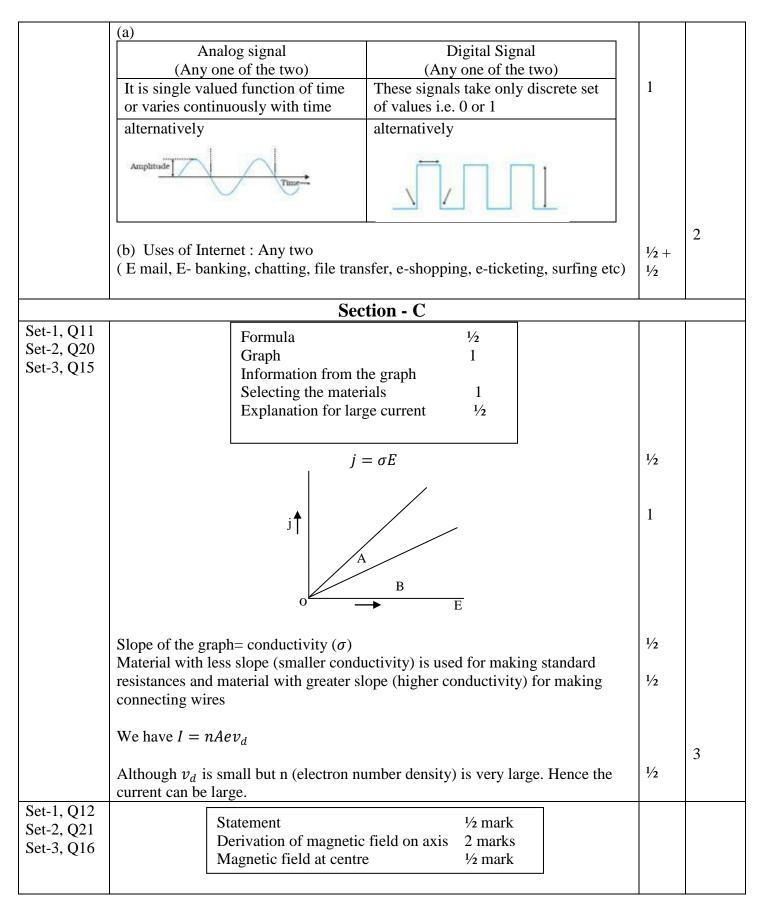
MARKING SCHEME SET 55/1/C

Q. No.	Expected Answer	r / Value Points	Mar ks	Total Marks
	Section	on - A		1
Set-1, Q1 Set-2, Q5 Set-3, Q2	Power factor = 1		1	1
Set-1, Q2 Set-2, Q4 Set-3, Q5	i) Width of depletion layer will decrease ii) potential barrier will decrease iii) junction will conduct (Any one point)		1	1
Set-1, Q3 Set-2, Q2 Set-3, Q4	$\overline{P} = \in_0 X_e \overline{E}$ (Also accept if the student writes $\overline{P} \propto \overline{E}$	or $\overline{P} = X_e \overline{E}$)	1	1
Set-1, Q4 Set-2, Q3 Set-3, Q1	Mobility is defined as drift velocity per u or $\mu = \frac{v_d}{E}$ S.I. Unit - m^2/Vs or Cm/Ns	nit electric field	1/2	1
Set-1, Q5 Set-2, Q1 Set-3, Q3	$\frac{1}{f} = (\mu - 1)(\frac{1}{R_1} - \frac{1}{R_2})$		1/2	1
	$ \dot{\mu} = 1.5 $ (Award 1 mark even if direct answer is w	<u> </u>	1/2	
9 1 06	Section	on - B		T
Set-1, Q6 Set-2, Q7 Set-3, Q10	Two differences between Interference as	nd Diffraction pattern 2		
	Interference 1 All the bright bands are of same intensity.	Diffraction Intensity of bright bands goes on decreasing with increasing order.		
	2 All the bright bands are of same width.	Not of same width.		
	3 Dark bands may be completely dark.4 Number of fringes are more.	Not completely dark. Less in number.		
	(Any two) [Award only 1 mark if student draws without writing points] On	•	1×2	2
	andicade CET I Dags 1 of 10			

Chandigarh SET I Page 1 of 18

Final Draft


		Perence in Construction - Ference in Working – 1 Microscope Objective is of very short focal length and short aperture and eye piece of short focal length and large aperture. $[f_e > f_o]$ It will form magnified image of a small nearby object. (Object is placed close to focus of objective which forms real and magnified image.)	Telescope Objective is of large focal length and large aperture but eye piece	1/2+ 1/2 1/2+ 1/2	2
Set-1, Q7 Set-2, Q10 Set-3, Q8	Postulate- Energy is radia to lower orbit and it equal $hv = E_i - E_i$	I to the difference in energ	os from a (permitted) higher	1	
	$\frac{1}{\lambda_{\alpha}} = R_H \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$			1/2	
		$\frac{5}{36} \because \lambda_{\alpha} = 6.99 \times 1$ at only writes $\frac{1}{\lambda} = R_{H} \left[\frac{1}{n_{f}} \right]$		1/2	2

Chandigarh SET I Page 2 of 18

Set-1, Q8			
Set-2, Q6 Set-3, Q9	Kirchhoff's laws $\frac{1}{2}+\frac{1}{2}$ To justify them $\frac{1}{2}+\frac{1}{2}$		
	Kirchhoff's I Law: (JUNCTION LAW) Sum of the incoming currents at a junction = Sum of outgoing currents		
	[Alternatively Algebraic sum of all the currents meeting at a junction in the electrical circuit is zero]	1/2	
	2 nd Law: (LOOP LAW) The algebraic sum of the changes in potential around any closed loop involving resistors and cells in the loop is zero	1/2	
	[Alternatively In any closed electrical part of circuit, sum of the e.m.f s is equal to sum of products of various currents and resistances through which currents pass.]		
	To justify First law is based on the law of conservation of charge.	1/2	
	Second Law is based on the law of conservation of energy.	1/2	2
Set-1, Q9 Set-2, Q8 Set-3, Q7	Formula for de Broglie wavelength – 1 Calculation and result – 1		
	Formula used $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$	1	
	$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}}$ $\sin \alpha \cdot E = \alpha \cdot \frac{1}{2}$	1/	
	since $E_n \propto \frac{1}{n^2}$ For $n = 2$ $E_2 = \frac{E_1}{4}$	1/2	
	$\therefore \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	1/2	2
	[Award ½ mark if the student only writes $\lambda = \frac{h}{mv}$] Also accept any other correct alternative answer.		
Set-1, Q10 Set-2, Q9 Set-3, Q6	(a) Difference between Analog and Digital signal 1 (b) Any two uses of internet 1		

Chandigarh SET I Page 3 of 18

Final Draft

Chandigarh SET I Page 4 of 18

Final Draft

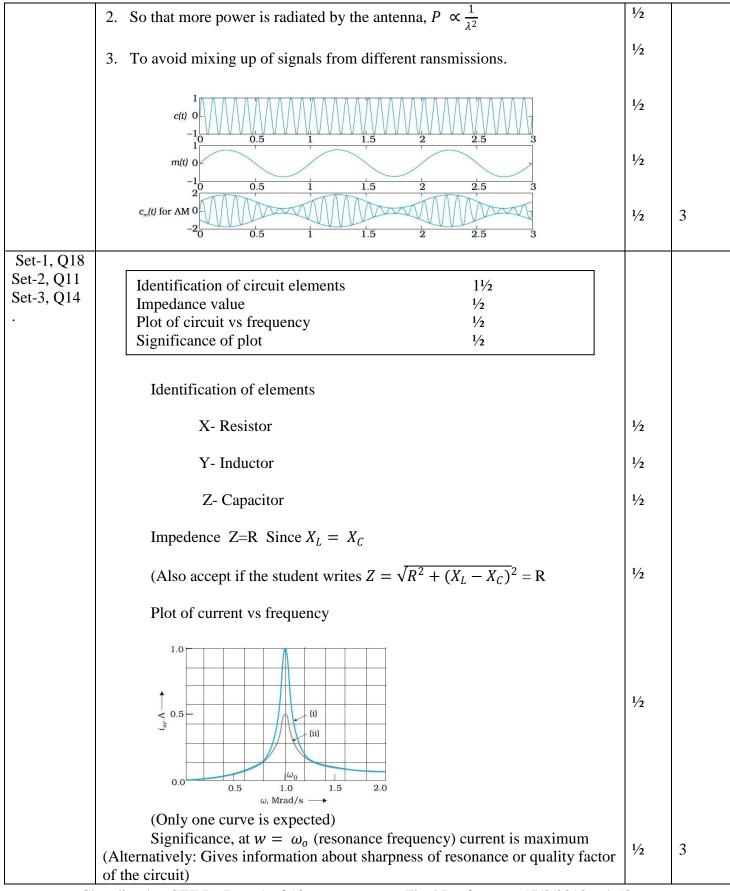
	Diet Covert's love		
	Biot Savart's law $\overrightarrow{dB} \propto I \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$ Or $\overrightarrow{dB} = \frac{\mu_o}{4\pi} I \frac{\overrightarrow{dl} \times \widehat{r}}{r^2}$	1/2	
	[Also accept if the student writes $dB \propto I$, $dB \propto dl$ and $dB \propto \frac{1}{r^2}$] dB_1 dB_2 dB_3 dB_4	1/2	
	Derivation The resultant magnetic field will be along the axis as the perpendicular (to the axis) components cancel out in pairs. $B = \int_{0}^{e\pi R} dB \cos \theta$ $= \int_{0}^{2\pi R} \frac{\mu_0}{4\pi} \frac{Idl}{(R^2 + x^2)} \frac{R}{(R^2 + x^2)^{1/2}}$	1/2	
	$= \frac{\mu_0 I}{4\pi} \frac{2\pi R^2}{(R^2 + x^2)^{3/2}} = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$	1/2	
	At centre, $x = 0$ $\therefore B_0 = \frac{\mu_0 I}{2R}$	1/2	
		1/2	3
Set-1, Q13 Set-2, Q22 Set-3, Q17	Polaroid 1 Transverse nature of light 1 Required Explanation 1 Polaroid consists of long chain molecules aligned in a particular direction Transverse nature of light.	1	

Chandigarh SET I Page 5 of 18

	P ₂ P ₂ P ₂ P ₁ P ₁ Alternatively	1/2	
	Explanation: Unpolarised light incident on a polaroid, gets linearly polarized with electric vector oscillating along the pass axis of Polaroid. It will pass out with same intensity from P ₂ , if pass axis of P ₂ is parallel to that of P ₁ . On rotating P ₂ intensity of light reduces to zero when their pass axes are perpendicular to each other showing transverse nature of light.	1/2	
	Explanation for intensity of light Unpolarised light incident on a Polaroid, gets polarized and its intensity is reduced to half and it does not depend on the orientation of the Polaroid.	1/2	3
Set-1, Q14 Set-2, Q16 Set-3, Q18	Fabrication of Zener Diode Cause of high Electric field Diagram for Zener Diode as Voltage Regulator Working Zener diode is fabricated by heavy doping of its p and n sections. Since doping is high, depletion layer becomes very thin. Hence, electric field $(= \frac{V}{d}) \text{ becomes high even for a small reverse bias.}$	1/2 1/2	
	Working: If input voltage increases/ decreases, current through Zener diode will also increase/ decreases. It increases/ decreases voltage drop across R_s without any change in voltage across R_L as potential across Zener diode does not change in	1	3

Chandigarh SET I Page 6 of 18

	breakdown region giving the regulated output voltage.		
	OR		
	(a) Diagram Formation of depletion region Potential barrier b) Effect on barrier potential 1/2 1		
	a) Electron drift $\stackrel{\longleftarrow}{\longrightarrow}$ Electron diffusion $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1/2	
	Hole diffusion Hole drift Explanation		
	Due to concentration gradient across p and n sides, holes from p diffuse into n section and leave behind ionized acceptor (negatively) ions which are immobile. As holes continue to diffuse from p to n, a layer of negative charge on p side of junction is formed. Similarly, the diffusion of electrons from n to p will form a positive charge space region on the n side.	1	
	The space charge region on either side of the junction which gets devoid of mobile charge carrier is known as the depletion layer .		
	The loss of electrons from n side and holes from p side cause a potential difference across the junction. This is known as the called barrier potential.	1/2	
	b) Barrier potential decreases in forward bias .	1/2	
	Barrier potential increases in reverse bias.	1/2	3
Set-1, Q15 Set-2, Q17 Set-3, Q11	Effect in each case 1½ Justification in each case 1½		
	i) Anode current will increase with increase of intensity	1/2	
	More is intensity of light, more is the number of photons and hence more number of electrons are emitted	1/2	
	ii) No effect	1/2	


Chandigarh SET I Page 7 of 18

Final Draft

	Frequency of light affects the maximum K.E. of the emitted photoelectrons.	1/2	
	iii) Anode current will increase with anode potential More anode potential will accelerate the electrons more till it attains a saturation value and get them collected at the anode at a faster rate.	1/2 1/2	3
Set-1, Q16 Set-2, Q18 Set-3, Q12	Active state Circuit diagram Working Reasons in each case 1/2 1/2 1/2 1/2 1/2		
	Active State: When the emitter base junction is forward biased and the base collector junction is reverse biased with $V_i > 0.6V$ or $V_i > 0.3V$. (Also accept any other correct answer)	1/2	
	<u>Diagram</u> :		
	$ \begin{array}{c c} R_B & B \\ \hline V_i & V_{BB} \end{array} $ $ \begin{array}{c c} R_C & \\ \hline V_{CC} & V_{CC} \end{array} $ $ = V_{CE}$	1	
	Explanation: If V_i is +ve or -ve, changes in V_{BE} will produce changes in I_c and hence changes in V_{CE} which will appear in amplified form	1/2	
	Base is thin so that there are few majority carriers in it.	1/2	
	Emitter is heavily doped so that it supplies more number of majority charge carriers. (Note: Award 1 mark if the student writes the reason for any one case)	1/2	3
Set-1, Q17 Set-2, Q19 Set-3, Q13	Factors for need of modulation 1½ Sketch of carrier wave, modulating wave and AM wave 1½ Need of Modulation:		
	1. To have smaller height of antenna $\left[h \sim \frac{\lambda}{4}\right]$	1/2	

Chandigarh SET I Page 8 of 18

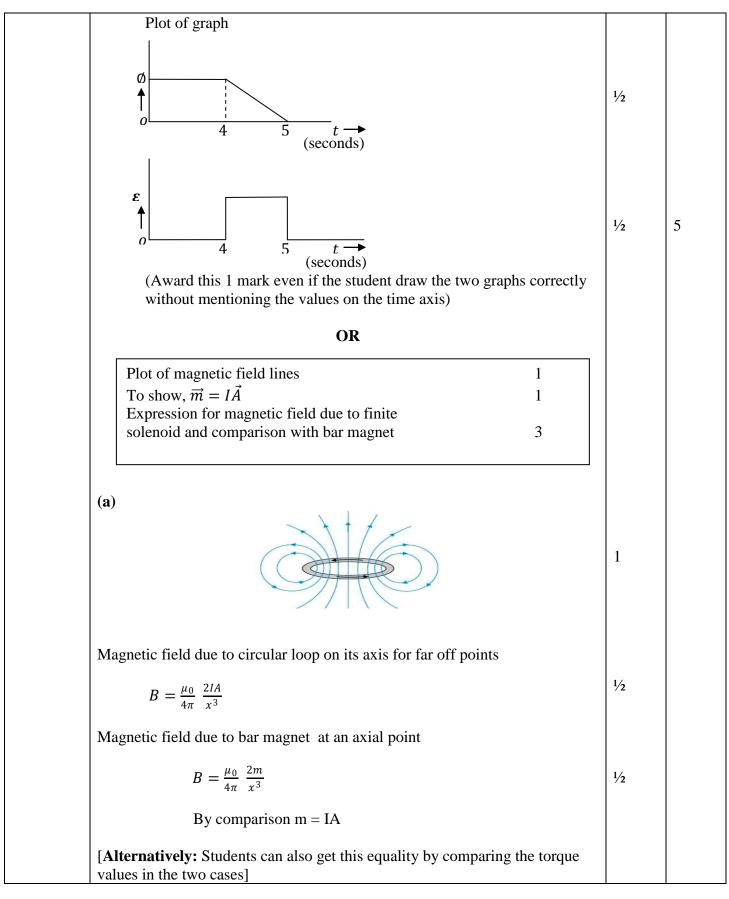
Final Draft

Chandigarh SET I Page 9 of 18

Final Draft

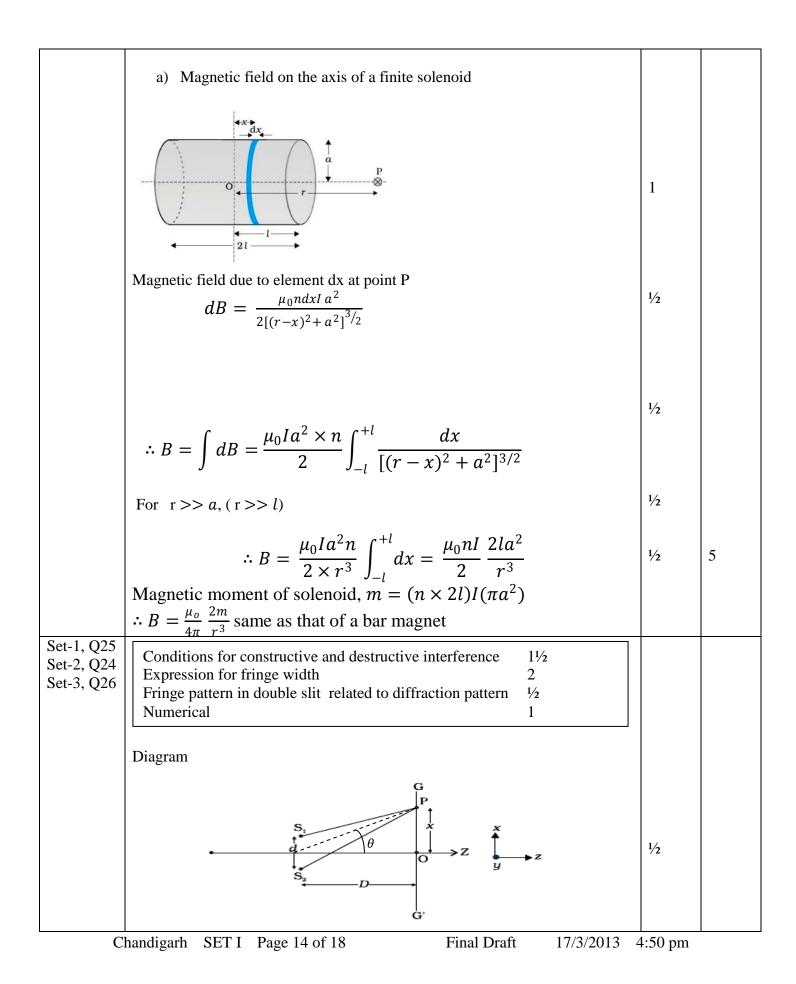
G . 1 O10			
Set-1, Q19 Set-2, Q12 Set-3, Q21	Equation of β^+ decay1Identification $\frac{1}{2}$ Calculation of mass defect $\frac{1}{2}$ Calculation of Q value1		
	Equation ${}^{11}_{6}C \rightarrow {}^{11}_{5}X + i^e + v + Q$	1	
	(Also accept if the student does not write v or Q on the R.H.S.)	1/2	
	X is an isobar	72	
	Mass defect $(\Delta m) = m({}^{11}_{6}C) - m({}^{11}_{5}X)$	1/2	
	= (11.011434 - 11.009305)u		
	= 0.002129 u	1/2	
	$Q = \Delta m \times 931.5 \text{ MeV}$		
	$= 0.002129 \times 931.5 \text{ MeV}$	1/2	3
	= 1.98 MeV		
Set-1, Q20 Set-2, Q13 Set-3, Q22	Calculation to find image formed by lens Nature of image Distance of mirror from lens 1½ 1 2 1 1 2		
	For lens $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	1/2	
	$\frac{1}{v} - \frac{1}{-15} = \frac{1}{+10}$	1/2	
	$\frac{1}{v} + \frac{1}{15} = \frac{1}{10}$	1/2	
	v = 30 cm	1/2	
	Nature of image- real, magnified		
	Final image formed will be at the object itself only if image formed by lens is at the position of centre of curvature of mirror	1/2	
	D = (30 + R)cm = (30 + 20)cm = 50 cm (Distance of mirror from lens)	1/2	3

Chandigarh SET I Page 10 of 18


wnloaded	From: http://www.cbseportal.com		
Set-1, Q21 Set-2, Q14 Set-3, Q19	Arranging in order Production of infrared waves Role of infrared waves in Earth's warmth and physical therapy 1½ 1½ 1½ 1½		
	Gamma(γ) rays, X-rays, Microwaves, Radiowaves	11/2	
	Infrared rays are produced by hot bodies / vibration of atoms and molecules	1/2	
	Infrared rays: (i) Maintain Earth's warmth through green house effect	1/2	
	(ii) Produce heat	1/2	3
Set-1, Q22 Set-2, Q15 Set-3, Q20	Process of charging capacitor Effect of dielectric on (i) Electric field and justification Process of charging The electrons, from the plate of the capacitor, which is connected to the positive terminal of the battery, move towards the battery. The reverse happens at the other plate. Hence, the plates get positively and negatively charged respectively. Effect of dielectric (a) Electric fields decreases Justification Because initially $E_1 = \frac{\sigma}{\varepsilon_0}$ and finally $E_2 = \frac{1}{K} \cdot \frac{\sigma}{\varepsilon_0}$, $E = \frac{E_1}{K}$	1/2 1/2 1/2 1/2	
	(b) Energy stored increases	1/2	
	New capacitance $C = \left(\frac{\varepsilon_0 A}{2d}\right) k$ $= \frac{K}{2} C_o, \qquad \therefore C < C_o$ Initially Energy $= \frac{Q^2}{2C}$ and Energy $= \frac{Q^2}{C} \cdot \frac{2}{K}$ as $1 < K < 2$	1/2	3
	Section – D		
Set-1, Q23 Set-2, Q23 Set-3, Q23	Necessity 1 Explanation; low power factor implies large power loss? 1 Two values each displayed by Ajit and his uncle 1+1		

Chandigarh SET I Page 11 of 18

		1	1
	a) For the same power at high voltage, current in the transmission wires becomes smaller.∴ power loss is less	1/2 1/2	
	[Award $\frac{1}{2}$ mark if the student just writes $P = I^2 R$]		
	b) If power factor is less, current in the cables is more so power loss is more [Alternately $P_{av} = E_v I_v \cos \theta$	1	
	If $\cos \theta$ is less, I_v is more so power loss is more] (Award $\frac{1}{2}$ mark if the student just writes $P = E_E I_v \cos \theta$		
	c) Values displayed By Ajit (Any two) – Social Awareness, understanding nature, concern for society	1/2 +1/2	
	By Uncle- Knowledgeable, professional honesty, concern for society. (Also accept other suitable values)	1/2 +1/2	4
	Section - E		
Set-1, Q24 Set-2, Q26 Set-3, Q25	Definition of self-inductance Expression for energy stored Direction of induced current Duration of induced current Graphs of magnetic flux and induced e.m.f 1 1 1 1 1 1 1 1 1 1 1 1 1		
	a) Self inductance of a coil is numerically equal to magnetic flux linked with the coil when unit current passes through it. $L = \frac{\varphi}{I}$ Alternately		
	Self inductance of a coil is numerically equal to induced e.m.f. produced in it when rate of change of current is unity in it.	1	
	Expression for energy Induced e.m.f. produced in coil, $\varepsilon = -L \frac{dI}{dt}$	1/2	
	\therefore work done by the source, dw= $+\varepsilon I dt = LIdI$ $W = \int_0^I LI dI = \frac{1}{2}LI^2$	1/2	
	 b) Direction of induced current – clockwise (MNOP) [A student can also show the direction in the diagram itself] 	1/2+1/2 1/2	
	Duration of induced current - 1s	1/2	


Chandigarh SET I Page 12 of 18

Final Draft

Chandigarh SET I Page 13 of 18

Final Draft

(a) Path difference $(\Delta) = S_2 P - S_1 P = d \sin \theta = \frac{dx}{D}$	1/2	
For constructive interference, $\Delta = n\lambda [n = 0,1,2]$	1/2	
Destructive interference, $\Delta = (2n-1)\frac{\lambda}{2}[n=1,2]$	1/2	
For bright bands, $\Delta = n\lambda = \frac{x_n d}{D}$ or $x_n = \frac{n\lambda D}{d}$	1/2	
For dark bands, $\Delta = (2n-1)\frac{\lambda}{2} = \frac{x_n d}{D}$ or $x_n = (2n-1)\frac{\lambda D}{2d}$	1/2	
Fringe width $\beta = X_n - X_{n-1} = \frac{\lambda D}{d}$	1/2	
[Alternately It is a broader diffraction peak in which there appears several fringes of smaller width due to double slit interference pattern]	1/2	
(c) 10β = width of central maxima $10 \frac{D\lambda}{d} = 2 \frac{D\lambda}{a}$	1/2	
$a = \frac{d}{5} = \frac{1}{5}mm = 0.2 mm$ OR	1/2	5
Diagram for image formation Derivation for combines focal length Ray diagram through prism Calculation of angle of incidence and angle of deviation 1 A B		
P I I ₁	1/2	

Chandigarh SET I Page 15 of 18

Final Draft

		1	T
	For First lens $\frac{1}{v_1} - \frac{1}{u} = \frac{1}{f_1}$ (i)	1/2	
	For Second lens $\frac{1}{v} - \frac{1}{v_1} = \frac{1}{f_2}$ (ii)	1/2	
	By adding i) and ii) $\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$	1/2	
	Or $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$		
	b) Ray Diagram Months Recorded to the control of t	1	
	Given A=60°, $\mu = \sqrt{3}$ It is minimum deviation position of prism, $\therefore r = \frac{A}{2} = 30^{\circ}$	1/2	
	$\mu = \frac{\sin i}{\sin r}$ $\therefore \sqrt{3} \times \sin 30 = \sin i$	1/2	
	$\Rightarrow i = 60^{\circ}$ $\therefore e = 60^{\circ}$	1/2	
	$i + e = A + D$ $60 + 60 = 60 + D : D = 60^{\circ}$	1/2	5
	Alternately		
	$[i = \frac{A + D_m}{2} : D_m = 60^\circ]$		
Set-1, Q26 Set-2, Q25 Set-3, Q24	Expression for potential energy 2 Numerical 3		
	a) Expression for potential energy i) To bring charge q_1 from ∞ to point($\overrightarrow{r_1}$) Work done = $W_1 = q_1 V(r_1)$	1/2	

Chandigarh SET I Page 16 of 18

Final Draft

ii) To bring charge q_2 from ∞ to point $(\overrightarrow{r_2})$		
Work done = $W_2 = q_2 V(r_2) + \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$		
$4\pi \varepsilon_0 - r_{12}$	1/2	
: Potential energy $U = W_1 + W_2 = q_1 V(r_1) + q_2 V(r_2) + \frac{Kq_1q_2}{r_{12}}$	1	
r_{12}		
b) $U_{l} = \frac{1}{4\pi\varepsilon_{o}} \left[\frac{Q \times 2Q}{l} + \frac{Q(-3)Q}{l} + \frac{2Q \times (-3)Q}{l} \right]$ $= -\frac{1}{4\pi\varepsilon_{o}} \frac{7Q^{2}}{l}$	1	
$U_f = \frac{1}{4\pi\varepsilon_o} \left[\frac{Q \times 2Q}{\frac{l}{2}} + \frac{Q(-3)Q}{\frac{l}{2}} + \frac{2Q \times (-3)Q}{\frac{l}{2}} \right]$		
$= -\frac{1}{4\pi\varepsilon_o} \frac{14Q^2}{l}$	1	
$W = U_f - U_i = -\frac{1}{4\pi\varepsilon_o} \frac{7Q^2}{l}$	1	5
(If a student writes $U_i = \frac{1}{4\pi\varepsilon_o} \left[\sum \sum \frac{q_i q_j}{r_{ij}} \right]$, award ½ mark)		
Or		
Definition of electric flux 1		
S.I. unit ½		
State and explain Gauss's law 1½		
Outward flux 1		
Flux is independent of shape and size 1		
Electric flux through a given area is defined as the number of electric field		
lines crossing normally through that area	1	
[Alternately,		
Electric flux is the surface integral of electric field over the surface		
$\Phi = \oint \vec{E} \cdot \vec{ds}$		
* — y Δ. u3]		
S.I. unit - Nm^2C^{-1} or Vm	1/2	
2.1. 2.1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	72	
Gauss Law: Electric flux through a given closed surface is $\frac{1}{\epsilon_n}$ times the	11/2	
charge enclosed by the closed surface		
[Alternatively: $\phi = \frac{q}{\varepsilon_o}$]		
	1	
Flux of a point charge placed at the centre of cube = $\frac{q}{\varepsilon}$		

Chandigarh SET I Page 17 of 18

Final Draft

Chandigarh SET I Page 18 of 18 Final Draft 17/3/2013 4:50 pm