MARKING SCHEME

1	No α H is present	1		
2	Ethanol will be converted into ethanoic acid.	1		
3	[Cr(H ₂ O) ₄ Cl ₂]Cl Tetraaquadichloridochromium(III) chloride	1/2 + 1/2		
4	The Brownian movement has a stirring effect, which does not allow the particles to settle.			
5	$e^{-E_a/RT}$ Corresponds to the fraction of molecules that have kinetic energy greater than E_a .			
6	(i) Vinyl chloride does not respond to NaOH and silver nitrate test because of partial double bond character due to resonance.	1		
	(ii) Hydride ion / H ⁻	1		
7	0.05 M Al ₂ (SO ₄) ₃ has higher freezing point.	1		
	0.05 M Al ₂ (SO ₄) _{3: i = 5, $\Delta T_f \propto$ No of particles; $\Delta T_f =$ i x concentration = 5 x 0.05 = 0.25 moles of ions}	1/2		
	0.1 M $K_3[Fe(CN)_6]$: i = 4, = 4 x 0.1 = 0.4 moles of ions	1/2		
8	$2Cr(s) + 3Fe^{2+}(aq.) \rightarrow 3 Fe(s) + 2 Cr^{3+}(aq.)$ n = 6	1/2		
	$E_{Cell} = E_{Cell}^{0} - \frac{2.303RT}{nF} \log \frac{\left[Cr^{3+}\right]^{2}}{\left[Fe^{2+}\right]^{3}}$	1/2		
	$E_{Cell} = 0.30 - \frac{0.059}{6} \log \frac{\left[10^{-1}\right]^2}{\left[10^{-2}\right]^3}$	1/2		
	$E_{Cell} = 0.26 \text{ V}$	1/2		
	OR			
		1/2		
	$\alpha = \frac{\bigwedge_{m}^{c}}{\bigwedge_{m}^{0}}$	1/2		
	$\alpha = \frac{41}{390.5} = 0.105$	1/2		
		1/2		
9	(i) Orthophosphorus acid on heating disproportionates to give orthophosphoric acid and phosphine gas.	1		

	$4H_3PO_3 \xrightarrow{heat} PH_3 + 3H_3PO_4$			
	(ii) When XeF ₆ undrgoes complete hydrolysis,it forms XeO₃.			
	$XeF_6 + 3H_2O \rightarrow 6HF + XeO_3$	1		
10	(i) Cr ₂ O ₇ ²⁻	1		
10	(i) $Cr_2O_7^{2^-}$ (ii) Cerium	1		
11	(i) 2,5-Dimethylhexane.	1+1+1		
11	(ii)1-Methyl-1-iodocyclohexane.	1.1.1		
	(iii) Nitroethane.			
12	$\Delta T_f = i K_f m$	1/2		
	5.12x2.5x1000			
	$2.12 = i \frac{5.12 \times 2.5 \times 1000}{122 \times 25}$	1		
	i= 0.505	1/		
	for association	1/2		
	$i=1-\frac{\alpha}{2}$	1/2		
	2	/2		
	α = 0.99	1/2		
	Percentage association of benzoic acid is 99.0%	/2		
13	(i) Because of H-bond formation between alcohol and water molecule.	1+1+1		
	(ii) Nitro being the electron withdrawing group stabilises the phenoxide ion.			
	(iii) side product formed in this reaction is acetone which is another important			
	organic compound.			
14	$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$	1		
	$t = \frac{2.303}{60} \log \frac{1}{0.0625}$			
	t = 0.0462 s	1		
15	(i) 'B' is a strong electrolyte.	1		
12	(i) 'B' is a strong electrolyte. A strong electrolyte is already dissociated into ions, but on dilution	1		
	interionic forces are overcome, ions are free to move. So there is	1		
	slight increase in molar conductivity on dilution.			
	(ii) On anode water should get oxidised in preference to Cl ⁻ , but due			
	to overvoltage/ overpotential Cl ⁻ is oxidised in preference to	1		
	water.			
16	(i) $\frac{x}{-} = kC^{\frac{1}{n}}$	1		
	(i) $\frac{x}{m} = kC^{/n}$			
	(ii) The charge on the sol particles is due to			
	Electron capture by sol particles during electrodispersion.			
	 Preferential adsorption of ions from solution. 	1		
	Formulation of electrical double layer.			
	(any one reason)			
	(iii) Molybdenum acts as a promoter for iron.	1		

17			1/2		
	А	ŅH ₂	each		
	В	NH ₃ CI			
	С	C E Z			
	D	$\begin{array}{c c} & O \\ & NH - S = O \end{array}$			
	E	N≡N CI			
	F	HO—NN—			
18	(i) Vitamin D. (ii) Uracil. (iii) 5 OH groups are present.				
19	(i) Addition (ii) Condensation/Hydrolysis (iii) Condensation				
20	(i) Gold is leached with a dilute solution of NaCN in the presence of air				
	(ii) Cryolite lowers the high melting point of alumina and makes it a good conductor of electricity.				
	(iii) CO forms a volatile complex with metal Nickel which is further decomposed to give pure Ni metal.				

		4 0			
21	(i)	$t_{2g}^4 e_g^0$	1		
	(ii)	sp^3d^2	1		
	(iii)	optical isomerism	1		
22	(i)	Cr ²⁺	1		
	(ii)	Sc ³⁺	1		
	(iii)	Sc ³⁺	1		
		OR			
		21			
	(i)	The high energy to transform Cu(s) to Cu ²⁺ (aq) is not balanced by			
	/···\	its hydration enthalpy.			
	(ii) Mn ²⁺ has d ⁵ configuration(stable half-filled configuration)				
	(iii)	d^4 to d^3 occurs in case of Cr^{2+} to Cr^{3+} . (More stable t_{2g}^3) while it			
		changes from d ⁶ to d ⁵ in case of Fe ²⁺ to Fe ³⁺ .			
23	(i)	Equanil, Iproniazid, phenelzine(any two)	1/2+1/2		
	(ii)	empathetic, caring, sensitive or any two values can be given.	1, 1,		
	(,	emparitedly samily, sensitive or any two values can be given.	1/2 +1/2		
	(iii)They sh	nould talk to him, be a patient listener, can discuss the matter with the	1		
	psychologist.				
	(iv)If the level of noradrenaline is low, then the signal sending activity becomes low				
	and the person suffers from depression.				
24	(a) (i)	$I_2 < F_2 < Br_2 < Cl_2$	1		
	(ii	$H_2O < H_2S < H_2Se < H_2Te$	1		
	(b) Gas A is Ammonia / NH ₃				
	(i) $Cu^{2+}(aq) + 4 NH_3 (aq) = [Cu(NH_3)_4]^{2+} (aq)$				
	(ii) $ZnSO_4(aq) + 2NH_4OH(aq) \rightarrow Zn(OH)_2(s) + (NH_4)_2SO_4(aq)$				
	OR				
	(a) CI		1		
	, ,		1		
	(b)				
			1		
	0				
		ОН НО			
		Pyrosulphuric acid (Oleum)			
		$(H_2S_2O_7)$			
	/ - \				
	(c) N ₂				
		eaching action of chlorine is due to oxidation.	1 ½		
		$l_2 + H_2O \rightarrow 2HCl + [O]$	1/2		
	(e) 3 <i>i</i>	$HNO_2 \rightarrow HNO_3 + H_2O + 2NO$	1		
			-		

25	(i) HO N	1
	(ii)	
	O O⁻Na⁺	
	OH +	1/2 +1/2
	(iii) Cl-CH ₂ -COOH	1
	B(I) NaHCO₃ test.	1
	(ii) Iodoform test./Fehling's Test/ Tollen's Tesst	1
	OR	1
	A (i) steric and electronic factor. (ii) Inductive effect decreases with distance and hence the conjugate base of 2- Fluorobutanoic acid is more stable. b) i)	½+½1
		1
	$CH_{3} + CrO_{2}Cl_{2} \xrightarrow{CS_{2}} CH(OCrOHCl_{2})_{2} \xrightarrow{H_{3}O^{*}} CHO$ Toluene Chromium complex Benzaldehyde (ii)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	(c)	
		1

	$HCN + OH$ \longrightarrow $:CN + H_2O$					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
26	(i) Ferrimagnetism.	1				
	These substances lose ferrimagnetism on heating and become paramagnetic.	1				
	(ii) r = 0.414 R	1				
	(iii) $r = \frac{\sqrt{3}}{4}a$	1				
	$r = \frac{\sqrt{3}}{4} \times 316.5$	1/2				
	•	1/2				
	r = 136.88 pm OR					
	(i) Schottky defect	1				
	It is shown by ionic substances in which the cation and anion are of almost similar sizes.					
	(ii) $r = \frac{\sqrt{3}}{4}a$	1				
	(iii) $\rho = \frac{zM}{a^3N_A}$					
		1/2				
	$8.92 = \frac{z \times 63}{(3.608 \times 10^{-8})^3 \cdot 6.022 \times 10^{23}}$	1				
	z = 4 So it is face centred cubic lattice	1/2				

Downloaded From :http://cbseportal.com/

CBSE SAMPLE PAPER CHEMISTRY-2017-18

MM: 70 BLUE PRINT TIME 3 HRS

No	CHAPTER	VSA	SA-1	SA-11	VBQ	LA	TOTAL
1	SOLID STATE					1(5) (U)	
2	SOLUTIONS		1(2) (U)	1(3) (A)			
3	ELECTROCHEMISTRY		1(2) (A)	1(3) (U)			9(23)
4	CHEMICAL KINETICS	1(1) (R)		1(3) (A)			
5	SURFACE CHEMISTRY	1(1) (R)		1(3) (R)			
6	EXTRACTION OF METALS			1(3) (U)			
7	p-BLOCK		1(2) (U)			1(5) (A)	
8	d AND f BLOCK ELEMENTS		1(2)(R)	1(3) (E&MD)			
9	COORDINATION CHEMISTRY	1(1) Hots		1(3) Hots			7(19)
10	HALOALKANES AND HALOARENES		1(2) (A)	1(3) (A)			
11	ALCOHOLS, PHENOLS AND	1(1) (E&MD)		1(3) (U)			
	ETHERS						
12	ALDEHYDES, KETONES AND	1(1)Hots				1(5)	
	CARBOXYLIC ACID					(E&MD)	
13	ORGANIC COMPOUNDS			1(3) (A)			
	COTAINING NITROGEN						
14	BIOMOLECULES			1(3) (U)			10(28)
15	POLYMERS			1(3) (E&MD)			
16	CHEMISTRY IN EVERY DAY LIFE				1(4) (E&MD)		
	Total						26(70)

R-Recall; U-Understanding; A-Application, Hots- Higher Order Thinking Skills-;

E&MD-Evaluation and multidisciplinary