SAMPLE QUESTION PAPER MATHEMATICS (041) CLASS XII – 2017-18

Time allowed: 3 hours

Maximum Marks: 100

General Instructions:

- (i) All questions are compulsory.
- (ii) This question paper contains 29 questions.
- (iii) Question 1-4 in Section A are very short-answer type questions carrying 1 mark each.
- (iv) Questions 5-12 in Section B are short-answertype questions carrying 2 marks each.
- (v) Questions 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
- (vi) Questions 24-29 in Section D are long-answer-II type questions carrying 6 marks each.

	Section A
	Questions 1 to 4 carry 1 mark each.
1.	Let $A = \{1, 2, 3, 4\}$. Let <i>R</i> be the equivalence relation on $A \times A$ defined by
	(a,b)R(c,d) iff $a + d = b + c$. Find the equivalence class $[(1,3)]$.
2.	If $A = [a_{ij}]$ is a matrix of order 2×2, such that $ A = -15$ and C_{ij} represents the cofactor
	of a_{ij} , then find $a_{21}c_{21} + a_{22}c_{22}$
3.	Give an example of vectors \vec{a} and \vec{b} such that $ \vec{a} = \vec{b} $ but $\vec{a} \neq \vec{b}$.
4.	Determine whether the binary operation * on the set N of natural numbers
	defined by $a * b = 2^{ab}$ is associative or not.
	Section B
	Questions 5 to 12 carry 2 marks each
5.	If $4\sin^{-1} x + \cos^{-1} x = \pi$, then find the value of <i>x</i> .
6.	Find the inverse of the matrix $\begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}$. Hence, find the matrix <i>P</i> satisfying the
	matrix equation $P\begin{bmatrix} -3 & 2\\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 2 & -1 \end{bmatrix}$.

Downloaded From :http://cbseportal.com/

7. Prove that if
$$\frac{1}{2} \le x \le 1$$
 then $\cos^{-1} x + \cos^{-1} \left[\frac{x}{2} + \frac{\sqrt{3-3x^2}}{2} \right] = \frac{\pi}{3}$
8. Find the approximate change in the value of $\frac{1}{x^2}$, when x changes from $x = 2$ to $x = 2.002$
9. Find $\int e^x \frac{\sqrt{1+\sin 2x}}{1+\cos 2x} dx$
10. Verify that $ax^2 + by^2 = 1$ is a solution of the differential equation $x(yy_2 + y_1^2) = yy_1$
11. Find the Projection (vector) of $2\hat{i} - \hat{j} + \hat{k}$ on $\hat{i} - 2\hat{j} + \hat{k}$.
12. If A and B are two events such that $P(A) = 0.4$, $P(B) = 0.8$ and $P(B|A) = 0.6$, then find $P(A|B)$.
13. $If \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
14. If $\Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
15. $If \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
16. $If \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
17. $If \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
18. $If \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
19. $If \Delta = \begin{vmatrix} a^x & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
19. $If \Delta = \begin{vmatrix} a^x & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
10. $If \Delta = \begin{vmatrix} a^x & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
11. $If \Delta = \begin{vmatrix} a^x & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
12. $If \Delta = \begin{vmatrix} a^x & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
13. $If \Delta = \begin{vmatrix} a^x & a^2 \\ a^2 & 1 & a \end{vmatrix} = -4$
14. Find 'a' and 'b', if the function given by $f(x) = \begin{cases} ax^2 + b, \text{ if } x < 1 \\ 2x + 1, \text{ if } x \ge 1 \end{cases}$
14. Find 'a' and 'b', if the function given by $f(x) = \begin{cases} ax^2 + b, \text{ if } x < 1 \\ 2x + 1, \text{ if } x \ge 1 \end{cases}$
15. differentiable at $x = 1$
16. OR
Determine the values of 'a' and 'b' such that the following function is continuous at $x = 0$:
17. $f(x) = \begin{cases} \frac{x + \sin x}{\sin(a + 1)x}, \text{ if } -\pi < x < 0 \\ 2, \text{ if } x = 0 \\ 2, \text{ if } x = 0 \\ 2, \frac{e^{\sin x} - 1}{bx}, \text{ if } x > 0 \end{cases}$

Downloaded From :http://cbseportal.com/

	If $y = \log(\sqrt{x} + \frac{1}{x})^2$ then prove that $x(x+1)^2 y + (x+1)^2 y = 2$
15.	If $y = \log(\sqrt{x} + \frac{1}{\sqrt{x}})^2$, then prove that $x(x+1)^2 y_2 + (x+1)^2 y_1 = 2$.
16.	Find the equation(s) of the tangent(s) to the curve $y = (x^3 - 1)(x - 2)$ at the points
	where the curve intersects the x –axis.
	OR
	Find the intervals in which the function $f(x) = -3\log(1+x) + 4\log(2+x) - \frac{4}{2+x}$
	is strictly increasing or strictly decreasing.
17.	A person wants to plant some trees in his community park. The local nursery has
	to perform this task. It charges the cost of planting trees by the following formula:
	$C(x) = x^3 - 45x^2 + 600x$, Where x is the number of trees and C(x) is the cost of
	planting x trees in rupees. The local authority has imposed a restriction that it can
	plant 10 to 20 trees in one community park for a fair distribution. For how many
	trees should the person place the order so that he has to spend the least amount?
	How much is the least amount? Use calculus to answer these questions. Which
	value is being exhibited by the person?
10	- 500 X
18.	Find $\int \frac{\sec x}{1 + \cos ecx} dx$
18. 19.	Find $\int \frac{\sec x}{1 + \cos ecx} dx$ Find the particular solution of the differential equation :
	1+00500
	Find the particular solution of the differential equation :
	Find the particular solution of the differential equation : $ye^{y}dx = (y^{3} + 2xe^{y})dy, y(0) = 1$
	Find the particular solution of the differential equation : $ye^{y}dx = (y^{3} + 2xe^{y})dy, y(0) = 1$ OR
	Find the particular solution of the differential equation : $ye^{y}dx = (y^{3} + 2xe^{y})dy, y(0) = 1$ OR Show that $(x - y)dy = (x + 2y)dx$ is a homogenous differential equation. Also,
19.	Find the particular solution of the differential equation : $ye^{y}dx = (y^{3} + 2xe^{y})dy, y(0) = 1$ OR Show that $(x - y)dy = (x + 2y)dx$ is a homogenous differential equation. Also, find the general solution of the given differential equation.
19.	Find the particular solution of the differential equation : $ye^{y}dx = (y^{3} + 2xe^{y})dy, y(0) = 1$ OR Show that $(x - y)dy = (x + 2y)dx$ is a homogenous differential equation. Also, find the general solution of the given differential equation. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then prove that
19. 20.	Find the particular solution of the differential equation : $ye^{y}dx = (y^{3} + 2xe^{y})dy, y(0) = 1$ OR Show that $(x - y)dy = (x + 2y)dx$ is a homogenous differential equation. Also, find the general solution of the given differential equation. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$, and hence show that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$.

22.	Bag I contains 1 white, 2 black and 3 red balls; Bag II contains 2 white, 1 black and
	1 red balls; Bag III contains 4 white, 3 black and 2 red balls. A bag is chosen at
	random and two balls are drawn from it with replacement. They happen to be
	one white and one red. What is the probability that they came from Bag III.
23.	Four bad oranges are accidentally mixed with 16 good ones. Find the probability
	distribution of the number of bad oranges when two oranges are drawn at
	random from this lot. Find the mean and variance of the distribution.
	Section D
	Questions 24 to 29 carry 6 marks each.
24.	If the function $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 2x - 3$ and $g : \mathbb{R} \to \mathbb{R}$ by
	$g(x) = x^3 + 5$, then find $f \circ g$ and show that $f \circ g$ is invertible. Also, find
	$(f \circ g)^{-1}$, hence find $(f \circ g)^{-1}(9)$.
	OR
	A binary operation st is defined on the set $\mathbb R$ of real numbers by
	$a * b = \begin{cases} a, \text{ if } b = 0\\ a + b, \text{ if } b \neq 0 \end{cases}$. If at least one of <i>a</i> and <i>b</i> is 0, then prove that $a * b = b * a$.
	Check whether * is commutative. Find the identity element for * , if it exists.
25.	If $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3 \end{bmatrix}$, then find A^{-1} and hence solve the following system of
	equations: $3x + 4y + 7z = 14$, $2x - y + 3z = 4$, $x + 2y - 3z = 0$
	OR
	If $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$, find the inverse of A using elementary row transformations
	and hence solve the following matrix equation $XA = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$.
26.	Using integration, find the area in the first quadrant bounded by the curve
	$y = x x $, the circle $x^2 + y^2 = 2$ and the y-axis

Downloaded From :http://cbseportal.com/

27.	Evaluate the following: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} dx$
	OR
	Evaluate $\int_{-2}^{2} (3x^2 - 2x + 4)dx$ as the limit of a sum.
28.	Find the distance of point $-2\hat{i} + 3\hat{j} - 4\hat{k}$ from the line
	$\vec{r} = \hat{i} + 2\hat{j} - \hat{k} + \lambda(\hat{i} + 3\hat{j} - 9\hat{k})$
	measured parallel to the plane: $x - y + 2z - 3 = 0$.
29.	A company produces two different products. One of them needs 1/4 of an hour of assembly work per unit, 1/8 of an hour in quality control work and Rs1.2 in raw materials. The other product requires 1/3 of an hour of assembly work per unit, 1/3 of an hour in quality control work and Rs 0.9 in raw materials. Given the current availability of staff in the company, each day there is at most a total of 90 hours available for assembly and 80 hours for quality control. The first product described has a market value (sale price) of Rs 9 per unit and the second product described has a market value (sale price) of Rs 8 per unit. In addition, the maximum amount of daily sales for the first product is estimated to be 200 units, without there being a maximum limit of daily sales for the second product. Formulate and solve graphically the LPP and find the maximum profit.