Marking Scheme

Mathematics Class X (2017-18)

Section A

S.No.	Answer	Marks
1.	Non terminating repeating decimal expansion.	[1]
2.	$k = \pm 4$	[1]
3.	$a_{11} = -25$	[1]
4.	(0, 5)	[1]
5.	9:49	[1]
6.	25	[1]

Section B

7.	LCM $(p, q) = a^{3}b^{3}$	[1/2]
	HCF $(p, q) = a^2b$	[1/2]
	LCM (p, q) × HCF (p, q) = $a^{5}b^{4} = (a^{2}b^{3})(a^{3}b) = pq$	[1]
8.	$S_n = 2n^2 + 3n$	[1/2]
	$S_1 = 5 = a_1$	[1/2]
	$S_2 = a_1 + a_2 = 14 \implies a_2 = 9$	[1/2]
	$d = a_2 - a_1 = 4$	
	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$	[1/2]
9.	For pair of equations $kx + 1y = k^2$ and $1x + ky = 1$	
	We have: $\frac{a_1}{a_2} = \frac{k}{1}, \frac{b_1}{b_2} = \frac{1}{k}, \frac{c_1}{c_2} = \frac{k^2}{1}$	
	For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	[1/2]
	$\therefore \frac{k}{1} = \frac{1}{k} \Longrightarrow k^2 = 1 \Longrightarrow k = 1, -1 \qquad \dots (i)$	[1/2]
	and $\frac{1}{k} = \frac{k^2}{1} \Longrightarrow k^3 = 1 \Longrightarrow k = 1$ (ii)	[1/2]
	From (i) and (ii), $k = 1$	[1/2]
10.	Since $\left(1, \frac{p}{3}\right)$ is the mid-point of the line segment joining the points (2, 0) and	
	$\left(0, \frac{2}{9}\right)$ therefore, $\frac{p}{3} = \frac{0 + \frac{2}{9}}{2} \Rightarrow p = \frac{1}{3}$	[1]
	The line $5x + 3y + 2 = 0$ passes through the point (-1, 1) as $5(-1) + 3(1) + 2 = 0$	[1]
11.	(i) P(square number) = $\frac{8}{113}$	[1]
	(ii) P(multiple of 7) = $\frac{16}{113}$	[1]

12.	Let number of red balls be $= x$	
	\therefore P(red ball) = $\frac{x}{12}$	
	If 6 more red balls are added:	[1/2]
	The number of red balls = $x + 6$	
	$P(\text{red ball}) = \frac{x+6}{18}$	
		[1]
	Since, $\frac{x+6}{18} = 2\left(\frac{x}{12}\right) \Rightarrow x = 3$	
	\therefore There are 3 red balls in the bag.	[1/2]

Section C

13.	Let $n = 3k$, $3k + 1$ or $3k + 2$.	
	(i) When $n = 3k$:	
	n is divisible by 3.	
	$n + 2 = 3k + 2 \implies n + 2$ is not divisible by 3.	[1]
	$n + 4 = 3k + 4 = 3(k + 1) + 1 \implies n + 4$ is not divisible by 3.	
	(ii) When $n = 3k + 1$:	
	n is not divisible by 3.	
	$n + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1) \implies n + 2$ is divisible by 3.	[1]
	$n + 4 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) + 2 \implies n + 4$ is not divisible by 3.	
	(iii) When $n = 3k + 2$:	
	n is not divisible by 3.	
	$n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \implies n + 2$ is not divisible by 3.	
	$n + 4 = (3k + 2) + 4 = 3k + 6 = 3(k + 2) \implies n + 4$ is divisible by 3.	[1]
	Hence exactly one of the numbers n, $n + 2$ or $n + 4$ is divisible by 3.	
14.	Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes therefore, $\left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = \frac{1}{3}(3x^2 - 5)$	[1]
	is a factor of given polynomial.	
	We divide the given polynomial by $3x^2 - 5$.	
	$x^2 + 2x + 1$	
	$3x^2$ 5 $3x^4 + 6x^3$ $2x^2$ 10x 5	
	3x - 5 $3x + 6x - 2x - 16x - 5$	
	$/\pm 3x^4 \mp 5x^2$	
	$\overline{6x^3 + 3x^2 - 10x - 5}$	[1]
	$+6x^3 = \pm 10x$	
	<u></u>	
	$3x^2 - 5$	
	$\pm 3x^2 + 5$	
	0	
	For other zeroes, $x^2 + 2x + 1 = 0 \implies (\overline{x+1})^2 = 0, x = -1, -1$	
	\therefore Zeroes of the given polynomial are $\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, -1$ and -1 .	[1]

15.	Let the ten's and the units digit be y and x respectively.	
	So, the number is $10y + x$.	[1/2]
	The number when digits are reversed is $10x + y$.	[1/2]
	Now, $7(10y + x) = 4(10x + y) \implies 2y = x$ (i)	[1]
	Also $x - y = 3$ (ii)	[1/2]
	Solving (1) and (2), we get $y = 3$ and $x = 6$.	
	Hence the number is 36.	[1/2]
16.	Let x-axis divides the line segment joining $(-4, -6)$ and $(-1, 7)$ at the point P in the	F1 (0)
	ratio 1 : K. $(1, 1)$	[1/2]
	Now, coordinates of point of division $P\left(\frac{-1-4k}{k+1}, \frac{7-6k}{k+1}\right)$	
	Since D lies on y onis therefore $7-6k = 0$	[1]
	Since P lies on x-axis, therefore $\frac{k+1}{k+1} = 0$	[1]
	$\Rightarrow 7 - 6k = 0$	
	\rightarrow 1r $-$ 7	
	\rightarrow k = $\frac{-}{6}$	
		[1/2]
	Hence the ratio is $1:-=6:7$	
	Now, the coordinates of P are $\left(\frac{-34}{13}, 0\right)$.	[1]
	OR	
	Let the height of parallelogram taking AB as base be h.	
	Now AB = $\sqrt{(7-4)^2 + (2+2)^2} = \sqrt{3^2 + 4^2} = 5$ units.	[1]
	Area (Δ ABC) = $\frac{1}{2} [4(2-9) + 7(9+2) + 0(-2-2)] = \frac{49}{2}$ sq units.	[1]
	Now, $\frac{1}{2} \times AB \times h = \frac{49}{2}$	
	$\Rightarrow \frac{1}{2} \times 5 \times h = \frac{49}{2}$	
	2 2	
	\Rightarrow h = $\frac{49}{5}$ = 9.8 units.	[1]
17.	\angle SQN = \angle TRM (CPCT as \triangle NSQ $\cong \triangle$ MTR)	[1]
	P	
	Since, $\angle P + \angle 1 + \angle 2 = \angle P + \angle PQR + \angle PRQ$ (Angle sum property)	
	$\Rightarrow \angle 1 + \angle 2 = \angle PQR + \angle PRQ$	
	$\Rightarrow 2\angle 1 = 2\angle POR$ (as $\angle 1 = \angle 2$ and $\angle POR = \angle PRO$)	5 4-
	/1 = /POR	[1]
1	x	1

21.	Let the area that can be irrigated in 30 minute be $A m^2$.	
	Water flowing in canal in 30 minutes = $\left(10,000 \times \frac{1}{2}\right)$ m = 5000 m	[1/2]
	Volume of water flowing out in 30 minutes = $(5000 \times 6 \times 1.5) \text{ m}^3 = 45000 \text{ m}^3 \dots (i)$	[1]
	Volume of water required to irrigate the field = $A \times \frac{8}{100} \text{ m}^3$	[1/2]
	(ii) Equating (i) and (ii), we get	
	$A \times \frac{8}{100} = 45000$	[1]
	$A = 562500 \text{ m}^2$.	
	OR	F1/01
	$1 - \sqrt{7^2 + 14^2} - 7\sqrt{5}$	[1/2]
	$\frac{1}{2} = \sqrt{1 + 1} = \sqrt{3}$	[1]
	Surface area of remaining solid = $6l^2 - \pi r^2 + \pi r l$, where r and l are the radius and slant height of the cone.	
	• <u>1</u> ^r 14 cm	
		[1]
	$= 6 \times 14 \times 14 - \frac{22}{7} \times 7 \times 7 + \frac{22}{7} \times 7 \times 7 \sqrt{5}$	F1 /01
	$= 1176 - 154 + 154\sqrt{5}$	[1/2]
	$= (1022 + 154\sqrt{5}) \text{ cm}^2$	
22.	$Mode = \ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$	[1]
	$= 60 + \left(\frac{29-21}{58-21-17}\right) \times 20$	[1]
	= 68	
	So, the mode marks is 68.	
	Empirical relationship between the three measures of central tendencies is:	
	3 Median = Mode + 2 Mean	F13
	3 Median = $68 + 2 \times 53$	
	Median = 58 marks	

23.	Let original speed of the train be x km/h.	
	Time taken at ariginal grand 360 hours	[1]
	Time taken at original speed = $\frac{1}{x}$ nours	[-]
	Time taken at increased aread 360 hours	[1/2]
	Time taken at increased speed = $\frac{1}{x+5}$ hours	
	Now 360 360 48	
	Now, $\frac{1}{x} - \frac{1}{x+5} = \frac{1}{60}$	[11/2]
	$2 \operatorname{co} \begin{bmatrix} 1 & 1 \end{bmatrix} 4$	
	$\Rightarrow 360 \left $	
	$\Rightarrow x^2 + 5x - 2250 = 0$	
	\Rightarrow x = 45 or -50 (as speed cannot be negative)	[1]
	\Rightarrow x = 45 km/h	
	OR	
	Discriminant = $b^2 - 4ac = 36 - 4 \times 5 \times (-2) = 76 > 0$	[1]
	So, the given equation has two distinct real roots	
	$5x^2 - 6x - 2 = 0$	
	Multiplying both sides by 5. $(5x)^2 - 2 \times (5x) \times 3 = 10$	
	$(5x)^{2} - 2 \times (5x) \times 3 = 10$ $\Rightarrow (5x)^{2} - 2 \times (5x) \times 3 + 3^{2} - 10 + 3^{2}$	
	$\Rightarrow (5x)^2 = 19$	[1]
	$\Rightarrow 5x - 3 - +\sqrt{19}$	
	$\rightarrow 5x - 5 - \pm \sqrt{12}$	
	$\Rightarrow x = \frac{3 \pm \sqrt{19}}{5}$	[1]
	5 Verification	
	$5\left(\frac{3+\sqrt{19}}{2}\right)^2 - 6\left(\frac{3+\sqrt{19}}{2}\right) - 2 - \frac{9+6\sqrt{19}+19}{2} - \frac{18+6\sqrt{19}}{2} - \frac{10}{2} - 0$	
	$3\left(\frac{-5}{5}\right)^{-0}\left(\frac{-5}{5}\right)^{-2} = \frac{-5}{5} = \frac{-5}{5} = 0$	[1/2]
	$\left(2 - \frac{1}{10}\right)^2$ $\left(2 - \frac{1}{10}\right)$	
	Similarly, $5\left(\frac{3-\sqrt{19}}{2}\right) - 6\left(\frac{3-\sqrt{19}}{2}\right) - 2 = 0$	
		[1/2]
24.	Let the three middle most terms of the AP be $a - d$, a , $a + d$.	
	We have, $(a - d) + a + (a + d) = 225$	[1]
	\Rightarrow 3a = 225 \Rightarrow a = 75	[1/2]
	Now, the AP is $12d = 2d = 2d = 2d = 2d = 2d$	
	$a = 180, \dots, a = 20, a = 0, a, a = 0, a = 20, \dots, a = 180$	
	(a + 18d) + (a + 17d) + (a + 16d) = 429	[1]
	$\Rightarrow 3a + 51d = 429 \Rightarrow a + 17d = 143$	
	$\Rightarrow 75 + 17d = 143$	
	$\Rightarrow d = 4$	[1/2]
	Now, first term = $a - 18d = 75 - 18(4) = 3$	
	:. The AP is 3, 7, 11,, 147.	[1]

Section D

