Sample Paper - 2010 Class - IX Subject - Maths

General Instructions:

i) All the questions are compulsory.
ii) This question paper consists of four Sections viz. sec-A, sec-B, sec-C and sec-D.
iii) Section-A contains 10 questions each carrying 1 mark, section- B contains 5 questions each carrying 2 marks, section-C contains 10 questions each carrying 3 marks and section-D contains 5 questions each carrying 6 marks.
iv) In question no:30, drawing should be as per the measurements given in the question.
v) Drawing should be neat \& clean.

SECTION - A $(1 \times 10=10)$

1 Express $0 . \overline{6}$ in $\frac{p}{q}$ form.
2 Verify whether the following is a zero of the polynomial, indicated against it.

$$
P(x)=3 x^{2}-1, \quad x=\frac{-1}{\sqrt{3}} .
$$

3 Write:
a) the abscissa of y - axis.
b) the ordinate of x - axis.

4 Give the geometric representation of $y=3$ as an equation in one variable.
5
6 Find the values of $\angle \mathrm{x}$ and $\angle \mathrm{y}$ in fig - I when AB II CD.

7 In a right triangle, $\angle \mathrm{B}=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC}$. Find $\angle \mathrm{A}$ and $\angle \mathrm{C}$.
8 The angles of a quadrilateral are respectively $100^{\circ}, 98^{\circ}, 92^{\circ}$. Find the fourth angle
9 In parallelogram $\mathrm{ABCD}, \mathrm{AB}=10 \mathrm{~cm}$. The attitudes corresponding to the sides AB and AD are respectively 7 cm and 8 cm . Find AD (fig-II)

Fig-II
Find the area of an equilateral triangle of side 2.1 cm .

SECTION - B ($\mathbf{2} \times 5=10)$

11 Represent $\sqrt{3}$ on the number of line.
12 Check whether $\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$ is a multiple of $\mathrm{x}+1$.
In the fig-III, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ}$ II $\mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$, find the values of $\angle \mathrm{x}$ and $\angle \mathrm{y}$.

In the fig-IV, if $\mathrm{QT} \perp \mathrm{PR}, \angle \mathrm{TQR}=40^{\circ}, \angle \mathrm{SPR}=30^{\circ}$, find the values of $\angle \mathrm{x}$ and $\angle \mathrm{y}$.

Fig-IV
Or
Sides $B C, C A$ and $B A$ of a triangle $A B C$ are produced to D, Q, P respectively as shown in fig-V. If $\angle \mathrm{ACD}=100^{\circ}, \angle \mathrm{QAP}=35^{\circ}$, find all the angles of the triangle ABC .

Find the area of a triangle, two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

SECTION - C $(\mathbf{3} \times 10=30)$

Rationalise the denominator

$$
\frac{3+2 \sqrt{2}}{4-7 \sqrt{3}}
$$

Simplify: $\quad\left(\frac{3}{4}\right)^{7} \times\left(\frac{5}{3}\right)^{11} \times\left(\frac{5}{4}\right)^{9}$

Plot the following points on a graph paper.
a) $(-3,0)$
b) $(-5,-7)$
c) $(-4,2)$
d) $(2,-4)$
e) $(6,4)$
f) $(0,-7)$

Draw the graph of $\quad 3 x-2 y=0$

Which of the following statements are true and which are false? Justify your answer with the help of Euclid's axioms and postulates
a) If $\mathrm{AB}=\mathrm{PQ}$ and $\mathrm{PQ}=\mathrm{XY}$ then $\mathrm{AB}=\mathrm{XY}$.
b) If two circles are equal then their radii are equal.
c) If $x=y$ then $x-a=y-a$

In fig-VI, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at T , then prove that.
$\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$

In fig-VII, if $\mathrm{x}+\mathrm{y}=\mathrm{w}+\mathrm{z}$ then prove that AOB is a line.

O is any point in the interior of $\triangle \mathrm{ABC}$, prove that $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$.
OR
In fig-VIII, $\mathrm{AB} \perp \mathrm{AC}$ and $\mathrm{AC} \perp \mathrm{CD}$ then prove that $\mathrm{AD}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2}-\mathrm{AB}^{2}$.

Show that the line segments joining the mid. points of the opposite sides of a quadrilateral bisect each other.

Find the area of a quadrilateral ABCD in which $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{DA}=5 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.

The perimeter of a triangular field is 540 cm and its sides are in the ratio of 25:17:12. Find the area of the field.

SECTION - D ($6 \times 5=30)$

a) A taxi fare in a city is as follows: for the first km, the fare is Rs. 10 and for the subsequent distance it
is Rs. 7 per km. Taking the total distance as xm and total fare as Rs.y, construct a linear equation for this information and draw its graph.
b) If the point $(3,4)$ lies on the graph of the equation $3 y=a x+7$, find the value of a.
a) Factorise: $\quad 2 y^{3}+y^{2}-2 y-1$
b) If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$

Or
a) Factorise: $\quad 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
b) Prove that: $x^{3}+y^{3}+z^{3}-3 x y z$

$$
=\frac{1}{2}(\mathrm{x}+\mathrm{y}+\mathrm{z})\left\{(\mathrm{x}-\mathrm{y})^{2}+(\mathrm{y}-\mathrm{z})^{2}+(\mathrm{z}-\mathrm{x})^{2}\right\}
$$

ABC is a triangle right angled at C . A line through the mid. point M of the hypotenuse AB and parallel to BC intersects AC at D . Show that.
a) D is the mid. point of AC.
b) $\quad \mathrm{MD} \perp \mathrm{AC}$
c) $\quad \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$.

In fig-IX, diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $A B=C D$ then show that
a) $\operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
b) $\quad \operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$

Fig-IX

In fig- X, E is the mid. point of the median $A D$ of $\triangle A B C$. EF is a median of $\triangle \mathrm{BED}$.
Prove that: $\quad \operatorname{ar}(\triangle \mathrm{BEF})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$.

Fig-X

Downloaded From: http://www.cbseportal.com

30 Construct a triangle XYZ in which $\angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ}$, $\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=11 \mathrm{~cm}$. Write the steps of construction.

