Design of Question Paper
 Mathematics - Class X

Time : Three hours
Max. Marks : 80
Weightage and distribution of marks over different dimensions of the question paper shall be as follows:
A. Weightage to content units
S.No. Content Units Marks

1. Number systems 04
2. Algebra 20
3. Trigonometry 12
4. Coordinate Geometry 08
5. Geometry 16
$6 . \quad$ Mensuration 10
6. Statistics \& Probability 10

Total \quad| 80 |
| :--- |

B Weightage to forms of questions

S.No.	Forms of Questions	Marks of each question	No. of Questions	Total marks
1.	Very Short answer questions (VSA)	01	10	10
2.	Short answer questions-I (SAI)	02	05	10
3.	Short answer questions-II (SAII)	03	10	30
4.	Long answer questions (LA)	06	$\mathbf{0 5}$	$\mathbf{3 0}$
	Total	$\underline{\mathbf{3 0}}$	$\underline{\mathbf{8 0}}$	
C.	Scheme of Options			

All questions are compulsory. There is no overall choice in the question paper. However, internal choice has been provided in one question of two marks each, three questions of three marks each and two questions of six marks each.
D. Weightage to diffculty level of Questions
S.No. Estimated difficulty level of questions Percentage of marks
1.

Easy 15
2.
3.

Average 70

Difficult15

Based on the above design, separate Sample papers along with their blue print and marking scheme have been included in this document for Board's examination. The design of the question paper will remain the same whereas the blue print based on this design may change.

Mathematics-X

Blue Print I

	Form of Unit	VSA (1 Mark) each	SAI (2 Marks) each	SAII (3 Marks) each	LA (6 Marks) each
Number systems	$1(1)$	-	$3(1)$	-	$4(2)$
Algebra	$3(3)$	$2(1)$	$9(3)$	$6(1)$	$20(8)$
Trigonometry	$1(1)$	$2(1)$	$3(1)$	$6(1)$	$12(4)$
Coordinate Geometry	-	$2(1)$	$6(2)$	-	$8(3)$
Geometry	$2(2)$	$2(1)$	$6(2)$	$6(1)$	$16(6)$
Mensuration	$1(1)$	-	$3(1)$	$6(1)$	$10(3)$
Statistic and Probability	$2(2)$	$2(1)$	-	$6(1)$	$10(4)$
Total	$\mathbf{1 0 (1 0)}$	$\mathbf{1 0 (5)}$	$\mathbf{3 0 (1 0)}$	$30(5)$	$\mathbf{8 0 (3 0)}$

Sample Question Paper - I

Mathematics - Class X

Time : Three hours

Max.Marks :80

General Instructions.

1. All Questions are compulsory.
2. The question paper consists of thirty questions divided into 4 sections A, B, C and D. Section A comprises of ten questions of 01 mark each, section B comprises of five questions of 02 marks each, section C comprises of ten questions of 03 marks each and section D comprises of five questions of 06 marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
4. There is no overall choice. However, internal choice has been provided in one question of 02 marks each, three questions of 03 marks each and two questions of 06 marks each. You have to attempt only one of the alternatives in all such questions.
5. In question on construction, drawings should be neat and exactly as per the given measurements.
6. Use of calculators is not permitted.However you may ask for mathematical tables.

Section A

1. Write the condition to be satisfied by q so that a rational number $\frac{p}{q}$ has a terminating decimal expansion.
2. The sum and product of the zeroes of a quadratic polynomial are $-1 / 2$ and -3 repectively. What is the quadratic polynomial?
3. For what value of k the quadratic equation $x^{2}-k x+4=0$ has equal roots?
4. Given that $\tan \theta=\frac{1}{\sqrt{5}}$, what is the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$
5. Which term of the sequence $114,109,104 \ldots$ is the first negative term?
6. A cylinder, a cone and a hemisphere are of equal base and have the same height. What is the ratio in their volumes?
7. In the given figure, $D E$ is parallel to $B C$
and $A D=1 \mathrm{~cm}, B D=2 \mathrm{~cm}$. What is the ratio of the area of $\triangle \mathrm{ABC}$ to the area of $\triangle \mathrm{ADE}$?
8. In the figure given below, PA and PB are tangents to the circle drawn from an external point P. CD is a third tangent touching the circle at Q . If $\mathrm{PB}=10 \mathrm{~cm}$, and $\mathrm{CQ}=2 \mathrm{~cm}$, what is the length of PC?

9. Cards each marked with one of the numbers 4,5,6... 20 are placed in a box and mixed thoroughly. One card is drawn at random from the box. What is the probability of getting an even prime number?
10. A student draws a cumulative frequency curve for the marks obtained by 40 students of a class, as shown below. Find the median marks obtained by the students of the class.

Section B

11 Without drawing the graphs, state whether the following pair of linear equations will represent intersecting lines, coincident lines or parallel lines :
$6 x-3 y+10=0$
$2 x-y+9=0$
Justify your answer.
12. Without using trigonometric tables, find the value of $\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\cos 57^{\circ} \operatorname{cosec} 33^{\circ}-2 \cos 60^{\circ}$

13 Find a point on the y-axis which is equidistant from the points $A(6,5)$ and $B(-4,3)$.
14 In the figure given below, $A C$ is parallel to $B D$,
Is $\frac{A E}{C E}=\frac{D E}{B E}$? Justify your answer.

15. A bag contains 5 red, 8 green and 7 white balls. One ball is drawn at random from the bag, find the probability of getting
(i) a white ball or a green ball.
(ii) neither a green ball not a red ball.

OR
One card is drawn from a well shuffled deck of 52 playing cards. Find the probability of getting
(i) a non-face card
(ii) A black king or a red queen.

Section C

16 Using Euclid's division algorithm, find the HCF of 56, 96 and 404.
OR
Prove that $3-\sqrt{5}$ is an irrational number
17. If two zeroes of the polynomial $x^{4}+3 x^{3}-20 x^{2}-6 x+36$ are $\sqrt{2}$ and $-\sqrt{2}$, find the other zeroes of the polynomial.
18. Draw the graph of the following pair of linear equations
$x+3 y=6$
$2 x-3 y=12$
Hence find the area of the region bounded by the
$x=0, y=0$ and $2 x-3 y=12$
19. A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: Rs 200 for Ist day, Rs. 250 for second day, Rs. 300 for third day and so on. If the contractor pays Rs 27750 as penalty, find the number of days for which the construction work is delayed.
20. Prove that: $\frac{1+\cos A}{\sin A}+\frac{\sin A}{1+\cos A}=2 \operatorname{cosec} A$

OR
Prove that:

$$
\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{\sin ^{2} A-\cos ^{2} A}
$$

21 Observe the graph given below and state whether triangle $A B C$ is scalene, isosceles or equilateral. Justify your answer. Also find its area.

22. Find the area of the quadrilateral whose vertices taken in order are $A(-5,-3) B(-4,-6)$, $C(2,-1)$ and $D(1,2)$.
23. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{CA}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{BAC}=45^{\circ}$, then construct a triangle similar to the given triangle whose sides are $\frac{6}{5}$ of the corresponding sides of the $\triangle \mathrm{ABC}$.

24 Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre of the circle.

25 A square field and an equilateral triangular park have equal perimeters.If the cost of ploughing the field at rate of $\mathrm{Rs} 5 / \mathrm{m}^{2}$ is Rs 720 , find the cost of maintaining the park at the rate of Rs $10 / \mathrm{m}^{2}$.

OR

An iron solid sphere of radius 3 cm is melted and recast into small sperical balls of radius 1 cm each. Assuming that there is no wastage in the process, find the number of small spherical balls made from the given sphere.

Section D

26. Some students arranged a picnic. The budget for food was Rs 240. Because four students of the group failed to go, the cost of food to each student got increased by Rs 5. How many students went for the picnic?

OR
A plane left 30 minutes late than its scheduled time and in order to reach the destination 1500 km away in time, it had to increase the speed by $250 \mathrm{~km} / \mathrm{h}$ from the usual speed. Find its usual speed.
27. From the top of a building 100 m high, the angles of depression of the top and bottom of a tower are observed to be 45° and 60° respectively. Find the height of the tower. Also find the distance between the foot of the building and bottom of the tower.

OR
The angle of elevation of the top a tower at a point on the level ground is 30°. After walking a distance of 100 m towards the foot of the tower along the horizontal line through the foot of the tower on the same level ground , the angle of elevation of the top of the tower is 60°. Find the height of the tower.

28 Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Using the above, solve the following:
A ladder reaches a window which is 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. Find the width of the street if the length of the ladder is 15 m .
29. The interior of building is in the form of a right circular cylinder of radius 7 m and height 6 m , surmounted by a right circular cone of same radius and of vertical angle 60°. Find the cost of painting the building from inside at the rate of Rs $30 / \mathrm{m}^{2}$
30 The following table shows the marks obtained by 100 students of class X in a school during a particular academic session. Find the mode of this distribution.

Marks

Less then 10
Less than 20
Less than 30
Less than 40
Less than 50
Less than 60
Less than 70
Less than 80100

Marking Scheme
 Sample Question Paper I

X-Mathmatics

Q.No.	Value points	Marks
1	Section A q should be expressible as 2^{x} - 5^{y} whese x, y are whole numbers	1
2	$2 x^{2}+x-6$	1
3	± 4	1
4	$\frac{2}{3}$	1
5	$24^{\text {th }}$	1
6	3:1:2	1
7	9:1	1
8	8 cm .	1
9	0	1
10	55.	1
	Section B	
11	Parallel lines Here $\frac{a_{1}}{a_{2}}=3, \frac{b_{1}}{b_{2}}=3, \frac{c_{1}}{c_{2}}=\frac{10}{9}$ $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$ Given system of equations will represent parallel lines.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
12.	$\begin{aligned} & \quad \cos 70^{\circ}=\sin \left(90^{\circ}-70^{\circ}\right)=\sin 20^{\circ} \\ & \cos 57^{\circ}=\sin \left(90^{\circ}-57^{\circ}\right)=\sin 33^{\circ} \\ & \cos 60^{\circ}=1 / 2 \\ & \frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\cos 57^{\circ} \operatorname{cosec} 33^{\circ}-2 \cos 60^{\circ} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$

Q.No	Value Points	Marks
	$\begin{aligned} & \frac{\sin 20^{\circ}}{\sin 20^{\circ}}+\sin 33^{\circ} \operatorname{cosec} 33^{\circ}-2 x \frac{1}{2} \\ & =1+1-1=1 \end{aligned}$	$1 / 2$ $1 / 2$
13.	Let $(0, y)$ be a point on the y-axis, equidistant from $A(6,5)$ and $B(-4,3)$ $\begin{aligned} & \mathrm{PA}=\sqrt{y^{2}-10 y+61} \\ & \mathrm{~PB}=\sqrt{\mathrm{y}^{2}-6 y+25} \end{aligned}$ Now, $\mathrm{PA}=\mathrm{PB} \Rightarrow(\mathrm{PA})^{2}=(\mathrm{PB})^{2}$ i.e. $y^{2}-10 y+61=y^{2}-6 y+25$ $\Rightarrow y=9$ Required point is $(0,9)$.	$1 / 2$ 1 $1 / 2$
14	Yes $\begin{aligned} & \triangle \mathrm{ACE} \sim \Delta \mathrm{DBE} \text { (AA similarity) } \\ & \frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{BE}}=\frac{\mathrm{AE}}{\mathrm{DE}} \\ & \frac{\mathrm{AE}}{\mathrm{CE}}=\frac{\mathrm{DE}}{\mathrm{BE}} \end{aligned}$	$1 / 2$ 1 $1 / 2$
15	(i) $P($ White or green ball $)=\frac{15}{20}=\frac{3}{4}$ (ii) $P($ Neither green nor red $)=\frac{7}{20}$ OR (i) $P($ non-face card $)=\frac{40}{52}=\frac{10}{13}$ (ii) $P($ black king or red queen $)=\frac{4}{52}=\frac{1}{13}$	1 1 1 1

Q .No	Value Points	Marks
16	Section C Using Euclid's division algorithm we have. $\begin{aligned} & 96=56 \times 1+40 \\ & 56=40 \times 1+16 \\ & 40=16 \times 2+8 \\ & 16=8 \times 2+0 \therefore \text { HCF of } 56 \text { and } 96 \text { is } 8 . \end{aligned}$ Now to find HCF of 56, 96 and 404 we apply Euclid's division algorthm to 404 and 8 i.e. $404=8 \times 50+4$ $8=4 \times 2+0 \therefore 4$ is the required HCF OR Let $3-\sqrt{5}$ be a rational number, say x $\begin{aligned} \therefore \quad & 3-\sqrt{5}=x \\ \Rightarrow & \quad \sqrt{5}=3-x \end{aligned}$ Here R.H.S is a rational number, as both 3 and x are so $\Rightarrow \sqrt{5}$ is a rational number proving that $\sqrt{5}$ is not rational \therefore Our supposition is wrong $\Rightarrow 3-\sqrt{5}$ is an irrational number	2 1 $1 / 2$ $1 / 2$ $11 / 2$ $1 / 2$
17.	Since $\sqrt{2}$ and $-\sqrt{2}$ are two zeroes of the polynomial $\therefore(x-\sqrt{2})(x+\sqrt{2})$ is a factor of the polynomial. By long division method $\begin{aligned} x^{4}+3 x^{3}-20 x^{2}-6 x+36 & =\left(x^{2}-2\right)\left(x^{2}+3 x-18\right) \\ & =\left(x^{2}-2\right)(x+6)(x-3) \end{aligned}$ \therefore The other zeroes of the Polynomial are -6,3.	1 1 1

\begin{tabular}{|c|c|c|}
\hline Q .No \& Value Points \& Marks

\hline 18. \& \& 2

1

\hline 19. \& | Let the delay in construction work be for n days Here $a=200, d=50, S_{n}=27750$. $\begin{aligned} & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\ & 27750=\frac{n}{2}[2 \times 200+(n-1) 50] \\ & =>n^{2}+7 n-1110=0 \\ & =>(n+37)(n-30)=0 \\ & n=-37(\text { Rejected }) \text { or } n=30 . \end{aligned}$ |
| :--- |
| \therefore Delay in construction work was for 30 days | \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| 1 |
| $1 / 2$ |
| $1 / 2$ |

\hline 20. \& \[
$$
\begin{aligned}
& \text { LHS }=\frac{(1+\cos A)^{2}+(\sin A)^{2}}{\sin A(1+\cos A)} \\
& =\quad \frac{2+2 \cos A}{\sin A(1+\cos A)} \\
& =\quad \frac{2(1+\cos A)}{\sin A(1+\cos A)} \\
& =\quad \frac{2}{\sin A} \\
& =\quad 2 \operatorname{cosec} A=\text { RHS. }
\end{aligned}
$$

\] \& | $1 / 2$ |
| :--- |
| 1 |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |

\hline
\end{tabular}

Q .No	Value Points	Marks
	OR $\begin{aligned} & \text { LHS } \quad=\frac{(\sin A+\cos A)^{2}+(\sin A-\cos A)^{2}}{(\sin A-\cos A)(\sin A+\cos A)} \\ & =\frac{\sin ^{2} A+\cos ^{2} A+2 \sin A \cos A+\sin ^{2} A+\cos ^{2} A-2 \sin A \cos A}{\sin ^{2} A-\cos ^{2} A} \\ & =\frac{2}{\sin ^{2} A-\cos ^{2} A}=\text { RHS. } \end{aligned}$	1 1 1
21	Scalene. Justification: Coordinates of A, B and C are respectively $\begin{aligned} & (-3,-4),(3,0),(-5,0) \\ & \mathrm{AB}=\sqrt{52} \\ & \mathrm{BC}=\sqrt{8} \\ & \mathrm{CA}=\sqrt{20} \end{aligned}$ Clearly $A B \neq B C \neq C A \therefore$ the given triangle us scalene. $\begin{aligned} & \text { Area }=1 / 2 B C \times(\perp \text { from } A \text { on } B C) \\ & =1 / 2(8 \times 4)=16 \mathrm{sq} \cdot \mathrm{u} . \end{aligned}$	1 $1 / 2$ $1 / 2$ 1
22.	Area of quad $A B C D=$ area $\triangle A B D+$ area $\triangle B C D$. area $\triangle \mathrm{ABD}=1 / 2[-5(-6-2)-4(2+3)+(-3+6)]$. $=\frac{23}{2} \mathrm{sq} \cdot \mathrm{u}$. Area $\Delta \mathrm{BCD}=1 / 2[-4(-1-2)+2(2+6)+1(-6+1)]$	$1 / 2$ 1

Q .No	Value Points	Marks
	$\begin{gathered} \qquad=\frac{23}{2} \text { sq•u. } \\ \text { Area of quad } A B C D=\left(\frac{23}{2}+\frac{23}{2}\right)=23 \mathrm{sq} \cdot \mathrm{u} \end{gathered}$	1 $1 / 2$
23.	For construction of $\triangle \mathrm{ABC}$ For constructio of the required similar triangle	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
24.	Correct Figure Since tangent is perpendicular to the radius : $\angle \mathrm{SPO}=\angle \mathrm{SRO}=\angle \mathrm{OQT}=90^{\circ}$ In right triangles OPS and ORS $\begin{aligned} & \mathrm{OS}=\mathrm{OS}(\text { Common }) \\ & \mathrm{OP}=\mathrm{OR} \quad \text { (radii of circle }) \end{aligned}$ $\therefore \Delta \mathrm{OPS} \cong \Delta \mathrm{ORS}$ (RHS Congruence) $\therefore \angle 1=\angle 2$ Similarly $\angle 3=\angle 4$ Now $\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$ (Sum of angles on the same side of Iranversal) $\begin{aligned} & \Rightarrow \angle 2+\angle 3=90^{\circ} \\ & \therefore \angle \mathrm{SOT}=90^{\circ} \end{aligned}$	$1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$
25.	Let the side of the square be 'a' meters	

\begin{tabular}{|c|c|c|}
\hline Q .No \& Value Points \& Marks \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{240}{x-4}-\frac{240}{x}=5 \\
\& \Rightarrow x^{2}-4 x-192=0 \\
\& \Rightarrow(x-16)(x+12)=0 \\
\& \Rightarrow x=16 \text { or } x=-12 \text { (Rejected) }
\end{aligned}
\] \\
No of students who actually went for the picnic \(=16-4=12\) \\
OR \\
Let the usual speed of plane be \(\times \mathrm{km} /\) hour \\
Time taken \(=\left(\frac{1500}{x}\right)\) hrs. with usual speed \\
Time taken after increasing speed \(=\left(\frac{1500}{x+250}\right)\) hrs
\[
\begin{aligned}
\& \frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2} \\
\& \Rightarrow x^{2}+250 x-750000=0 \\
\& \Rightarrow(x+1000)(x-750)=0 \\
\& \Rightarrow x=750 \text { or }-1000 \text { (Rejected) }
\end{aligned}
\] \\
\(\therefore\) usual speed of plane \(=750 \mathrm{~km} / \mathrm{h}\).
\end{tabular} \& \[
\begin{aligned}
\& 11 / 2 \\
\& 1 \\
\& 1 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& \\
\& \\
\& 1 \\
\& \\
\& 1 / 2 \\
\& 11 / 2 \\
\& 1 \\
\& 1 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline 27. \& Correct Figure
\[
\begin{aligned}
\text { In right } \triangle B A C, \& \frac{A B}{A C}=\tan 60^{\circ} \\
\& \frac{100}{A C}=\tan 60^{\circ} \\
\& \Rightarrow A C=\left(\frac{100}{\sqrt{3}}\right) \mathrm{m}
\end{aligned}
\] \& 1

1112

\hline
\end{tabular}

Q .No	Value Points	Marks
	In right $\triangle B E D, \frac{B E}{D E}=\tan 45^{\circ}=1$	
	$B E=D E$	
	$\therefore \mathrm{BE}=\left(\frac{100}{\sqrt{3}}\right) \mathrm{m} .$	$11 / 2$
	$\begin{aligned} \text { Height of tower }(C D) & =A E \\ & =A B-B E \end{aligned}$	
	$=\left(100-\frac{100}{\sqrt{3}}\right) \mathrm{m} .$	1
	$=42.27 \mathrm{~m}$.	$1 / 2$
	Distance between the foot the building and the bottom of the tower $(A C)=57.73 \mathrm{~m}$.	$1 / 2$
	Correct figure In right $\triangle B A C, \frac{A B}{A C}=\tan 30^{\circ}$	1
	$\begin{equation*} A B=(100+A D) \times \frac{1}{\sqrt{3}} \tag{i} \end{equation*}$ In right $\triangle B A D$, $\frac{\mathrm{AB}}{\mathrm{AD}}=\tan 60^{\circ}$	$11 / 2$
	$\begin{equation*} \mathrm{AB}=\mathrm{AD} \times \sqrt{3} \tag{ii} \end{equation*}$ From (i) and (ii) we get	$11 / 2$

Q .No	Value Points	Marks
		$\begin{aligned} & 11 / 2 \\ & 11 / 2 \end{aligned}$
28.	Fig, Given, To Prove, Construction Proof 2nd part of the question: $\begin{aligned} & \mathrm{AE}=9 \mathrm{~m} \\ & \mathrm{CE}=12 \mathrm{~m} \end{aligned}$ width of street $=21 \mathrm{~m}$.	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
29.	Correct Figure. Internal curved surface area of cylinder $\begin{aligned} & =2 \pi \mathrm{rh} \\ & \left.=(2 \pi \times 7 \times 6) \mathrm{m}^{2}\right) \\ & =\left(2 \times \frac{22}{7} \times 7 \times 6\right) \mathrm{m}^{2} \\ & =264 \mathrm{~m}^{2} \end{aligned}$	1 $11 / 2$

Q .No	Value Points	Marks
	In right $\triangle \mathrm{OAB}, \frac{\mathrm{AB}}{\mathrm{OB}}=\sin 30^{\circ}$ $\frac{7}{\mathrm{OB}}=\frac{1}{2}$ \therefore Slant height of cone $(O B)=14 \mathrm{~m}$. Internal curved surface area of cone $\begin{gathered} \begin{array}{c} =\pi \mathrm{rl} \\ =\frac{22}{7} \times 7 \times 14 \\ =308 \mathrm{~m}^{2} \end{array} \\ \begin{aligned} \text { Total Area to be painted } & =(264+308) \\ & =572 \mathrm{~m}^{2} \end{aligned} \\ \begin{aligned} \text { Cost of painting } & =\operatorname{Rs}(30 \times 572) \\ & =\operatorname{Rs~} 17160 . \end{aligned} \end{gathered}$	1 1 1 $1 / 2$
30	The given data can be written as -	1

$$
\text { Mode }=\ell+\left(\frac{f_{1}-f_{o}}{2 f_{1}-f_{o}-f_{2}}\right) \times h
$$

1

1

2

$$
\begin{aligned}
\therefore \text { Mode } & =40+\frac{(20-12)}{(2 \times 20-12-11)} \times 10 \\
& =40+\frac{80}{17} \\
& =44.7
\end{aligned}
$$

Mathematics-X

Blue Print II

Form of Questions Unit	VSA (1 Mark)	$\begin{gathered} \text { SA - I } \\ (2 \text { Marks) } \end{gathered}$	$\begin{gathered} \text { SA - II } \\ \text { (3 Marks) } \end{gathered}$	LA (6 Marks)	Total
Number systems	1(1)	--	3(1)	-	4(2)
Algebra	3(3)	2(1)	9(3)	6(1)	20(8)
Trigonometry	1(1)	2(1)	3(1)	6(1)	12(4)
Coordinate Geometry	-	2(1)	6(2)	-	8(3)
Geometry	2(2)	2(1)	6(2)	6(1)	16(6)
Mensuration	1(1)	-	3(1)	6(1)	10(3)
Statistics and Probability	2(2)	2(1)	-	6(1)	10(4)
Total	10(10)	10(5)	30(10)	30(5)	80(30)

Sample Question Paper - II
 Mathematics - Class X

Time : Three hours

Max. Marks : $\mathbf{8 0}$

General Instructions :

1. All questions are compulsory.
2. The question paper consists of thirty questions divided into 4 Section A, B, C and D. Section A comprises of ten questions of 01marks each, section B comprises of five questions of 02 marks each, section C comprises of ten questions of 03 marks each and section D comprises of five questions of 06 marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
4. There is no overall choice. However, internal choice has been provided in one question of 02 marks each, three questions of 03 marks each and two questions of 06 marks each. You have to attempt only one of the alternatives in all such questions.
5. In question on construction, drawings should be neat and exactly as per the given measurements.
6. Use of calculator is not permitted. However, you may ask for mathematical tables.

Section A

1. State the Fundamental Theorem of Arithmetic.
2. The graph of $y=f(x)$ is given below. Find the number of zeroes of $f(x)$.

3. Give an example of polynomials $f(x), g(x), q(x)$, and $r(x)$ satisfying $f(x)=g(x) \cdot q(x)+r(x)$ where $\operatorname{deg} r(x)=0$.
4. What is the nature of roots of the quadratic equation $4 x^{2}-12 x-9=0 ?$
5. If the adjoining figure is a sector of a circle of radius 10.5 cm ,
find the perimeter of the sector. (Take $\pi=\frac{22}{7}$)

6. The length of tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm . What will be the radius of the circle?
7. Which measure of central tendency is given by the x-coordinate of the point of intersection of the 'more than' ogive and 'less than' ogive?
8. A bag contains 5 red and 4 black balls. A ball is drawn at random from the bag. What is the probability of getting a black ball?
9. What is the distance between two parallel tangents of a circle of the radius 4 cm ?
10. The height of a tower is 10 m . Calculate the height of its shadow when Sun's altitude is 45°.

Section B

11. From your pocket money, you save Rs. 1 on day 1, Rs. 2 on day 2, Rs. 3 on day 3 and so on. How much money will you save in the month of March 2008 ?
12. Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45° OR

If A, B, C are interior angles of a $\triangle A B C$, then show that

$$
\operatorname{Cos}\left(\frac{B+C}{2}\right)=\operatorname{Sin} \frac{A}{2}
$$

13. In the figure given below, $D E / / B C$. If $A D=2.4 \mathrm{~cm}, \mathrm{DB}=3.6 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$ Find AE .

14. Find the values of x for which the distance between the point $P(2,-3)$ and $Q(x, 5)$ is 10 units.
15. All cards of ace, jack and queen are removed from a deck of playing cards. One card is drawn at random from the remaining cards. find the probability that the card drawn is
a) a face card
b) not a face card

Section C

16. Find the zeroes of the quadratic polynomial $x^{2}+5 x+6$ and verify the relationship between the zeroes and the coefficients.
17. Prove that $5+\sqrt{2}$ is irrational.
18. For what value or ' k ' will the following pair of linear equations have infinitely many solutions

$$
k x+3 y=k-3
$$

$$
12 x+k y=k
$$

OR

Solve for x and y

$$
\left.\begin{array}{l}
\frac{5}{x}+\frac{1}{y}=2 \\
\frac{6}{x}-\frac{3}{y}=1
\end{array}\right\} x \neq 0, y \neq 0
$$

19. Determine an A.P. whose $3^{\text {rd }}$ term is 16 and when 5 th term is subtracted from 7 th term, we get 12 .

OR
Find the sum of all three digit numbers which leave the remainder 3 when divided by 5 .
20. Prove that

$$
\sqrt{\frac{\operatorname{Sec} A-1}{\operatorname{Sec} A+1}}+\sqrt{\frac{\operatorname{Sec} A+1}{\operatorname{Sec} A-1}}=2 \operatorname{Cosec} A
$$

21. Prove that the points $A(-3,0), B(1,-3)$ and $C(4,1)$ are the vertices of an isoscles right triangle. OR
For what value of ' K ' the points $A(1,5), B(K, 1)$ and $C(4,11)$ are collinear?
22. In what ratio does the point $P(2,-5)$ divide the line segment joining $A(-3,5)$ and $B(4,-9)$?
23. Construct a triangle similar to given $A B C$ in which $A B=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\angle \mathrm{ABC}=$ 60°, such that each side of the new triangle is $3 / 4$ of given $\triangle A B C$.
24. The incircle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E, and F respectively. IF $A B=A C$, prove that $B D=C D$.

25. PQRS is a square land of side 28 m . Two semicircular grass covered portions are to be made on two of its opposite sides as shown in the figure. How much area will be left uncovered? (Take $\pi=\frac{22}{7}$)

Section D

26. Solve the following system of linear equations graphically:

$$
\begin{aligned}
& 3 x+y-12=0 \\
& x-3 y+6=0
\end{aligned}
$$

Shade the region bounded by these lines and the x-axis. Also find the ratio of areas of triangles formed by given lines with x-axis and the y-axis.
27. There are two poles, one each on either bank of a river, just opposite to each other. One pole is 60 m high. From the top of this pole, the angles of depression of the top and the foot of the other pole are 30° and 60° respectively. Find the width of the river and the height of the other pole.
28. Prove that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Use the above theorem, in the following.
The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $144 \mathrm{~cm}^{2}$. If the largest side of the smaller triangle is 27 cm , find the largest side of the larger triangle.

OR

Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Use the above theorem, in the following.
If $A B C$ is an equilateral triangle with $A D \perp B C$, then $A D^{2}=3 D C^{2}$.
29. An iron pillar has lower part in the form of a right circular cylinder and the upperpart in the form of a right circular cone. The radius of the base of each of the cone and cylinder is 8 cm . The cylindrical part is 240 cm high and the conical part is 36 cm high. Find the weight
of the pillar if $1 \mathrm{~cm}^{3}$ of iron weighs 7.5 grams. (Take $\pi=\frac{22}{7}$)
OR

A container (open at the top) made up of a metal sheet is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find
(i) the cost of milk when it is completely filled with milk at the rate of Rs 15 per litre.
(ii) the cost of metal sheet used, if it costs Rs 5 per $100 \mathrm{~cm}^{2}$

$$
\text { (Take } \pi=3.14 \text {) }
$$

30. The median of the following data is 20.75. Find the missing frequencies x and y, if the total frequency is 100.

Class Interval	Frequency
$0-5$	7
$5-10$	10
$10-15$	x
$15-20$	13
$20-25$	y
$25-30$	10
$30-35$	14
$35-40$	9

Marking Scheme
 X Mathematics - Paper II
 Section A

Q .No	Value Points	Marks
1.	Every Composite number can be factorised as a product of prime numbers. This factorisation is unique, apart from. the order in which the prime factors occur.	1
2.	Two	1
3.	One such example : $\begin{aligned} & f(x)=x^{2}+1, g(x)=x+1, q(x)=(x-1) \\ & \text { and } r(x)=2 \end{aligned}$	1
4.	Real and Unequal	1
5.	32 cm .	1
6.	3 cm	1
7.	Median.	1
8.	$\frac{4}{9}$	1
9.	8 cm	1
10.	10 m .	1
	Section B	
11.	Let money saved be Rs x	
	$\therefore \mathrm{x}=1+2+3+--+31(\because 31$ days in march $)$	$1 / 2$
	$=\frac{31}{2}[1+31] \quad\left[\because \operatorname{Sn}=\left(\frac{n}{2}\right)(a+1)\right]$	$1 / 2$
	$=\frac{31}{2} \times 32^{16}$	
	$=496$	$1 / 2$
	Money Saved = Rs 496	$1 / 2$
12.	$\operatorname{Sin} 67^{\circ}=\operatorname{Sin}\left(90^{\circ}-23^{\circ}\right)$	$1 / 2$
	$\operatorname{Cos} 75^{\circ}=\operatorname{Cos}\left(90^{\circ}-15^{\circ}\right)$	$1 / 2$
	$\therefore \operatorname{Sin} 67^{\circ}+\operatorname{Cos} 75^{\circ}$	
	$=\operatorname{Sin}\left(90^{\circ}-23^{\circ}\right)+\operatorname{Cos}\left(90^{\circ}-15^{\circ}\right)$	

Q.No	Value Points	Marks	
	$\begin{aligned} & \operatorname{Cos} 23^{\circ}+\operatorname{SIn} 15^{\circ} \\ & \binom{\therefore A+B+C=180^{\circ}}{\Rightarrow B+C=180^{\circ}-A} \\ & \therefore \frac{B+C}{2}=90^{\circ}-\frac{A}{2} \\ & \therefore \text { LHS }=\operatorname{Cos}\left(90^{\circ}-\frac{A}{2}\right) \\ & =\operatorname{Sin} \frac{A}{2} \\ & =\text { R.H.S } \end{aligned}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	
13.	In $A B C, D E \\| B C$, $\begin{array}{ll} \therefore & \text { By B.P.T, } \\ & \frac{A E}{E C}=\frac{A D}{D B} \\ = & \frac{A E}{A C-A E}=\frac{2.4}{3.6}=\frac{2}{3} \\ = & 3 \mathrm{AE}=2(\mathrm{AC}-\mathrm{AE}) \\ = & 5 \mathrm{AE}=2 \mathrm{AC} \\ = & \\ = & \mathrm{AE}=2 \times 5 \mathrm{~cm} \\ & \end{array}$	$1 m$ $1 m$	
14.	Given PQ $=10$ Units \therefore By Distance Formula $\begin{array}{ll} \sqrt{(x-2)^{2}+(5+3)^{2}}=10 \\ \Rightarrow & (x-2)^{2}+64=100 \\ \Rightarrow & (x-2)^{2}=36 \\ \Rightarrow & x-2=+6,-6 \\ \Rightarrow & x=8,-4 \end{array}$	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	

Q.No	Value Points	Marks
17.	$\begin{aligned} & =\frac{6}{1} \\ & =\left(\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}\right) \end{aligned}$ Suppose $5+\sqrt{2}$ is a rational number, say n. $\Rightarrow \quad \sqrt{2}=n-5$ As n is rational and we know that 5 is rational, $\therefore \mathrm{n}-5$ is a rational number. $\therefore \sqrt{2}$ is a rational number Prove that $\sqrt{2}$ is not a rational number \therefore Our supposition is wrong Hence $5+\sqrt{2}$ is an irrational number	1 $1 / 2$ $1 / 2$ $11 / 2$ $1 / 2$
18.	For infinitely many solutions $\begin{aligned} & \frac{k}{12}=\frac{3}{k}=\frac{k-3}{k} \quad(k \neq 0) \\ & \frac{k}{12}=\frac{3}{k} \\ & =k^{2}=36 \\ & =k=+6 \\ & \frac{3}{k}=\frac{k-3}{k} \\ & \Rightarrow 3=K-3 \quad(k \neq 0) \\ & \Rightarrow k=6 \end{aligned}$ The required value of k is 6 . Put $\quad \frac{1}{x}=u$ $\frac{1}{y}=v$	1 1 $1 / 2$ $1 / 2$

Q .No	Value Points	Marks
	$\begin{gather*} \therefore 5 u+v=2 \tag{i}\\ 6 u-3 v=1 \tag{ii} \end{gather*}$ Multiplying equation (i) by 3 and adding to (ii) we get $\begin{aligned} & 15 u+3 v=6 \\ & 6 u-3 v=1 \end{aligned}$ Adding $\begin{aligned} & 21 u=7 \\ & \qquad u=\frac{\not z^{1}}{213}=\frac{1}{3} \\ & u=\frac{y^{1}}{2 / 3}=\frac{1}{3} \end{aligned}$ $\text { From (i) } \begin{aligned} v & =2-5 u \\ & =2-5\left(\frac{1}{3}\right) \\ & =\frac{6-5}{3} \\ & v=\frac{1}{3} \\ \therefore \quad & x=3 \\ & y=3 \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1
19.	Let the A.P be $a, a+d, a+2 d,----$ a is the first term, d is the common difference It is given that $\begin{align*} & a+2 d=16 \tag{1}\\ & (a+6 d)-(a+4 d)=12 \tag{2} \end{align*}$ From (2), $\not a+6 d-\not a-4 d=12$ $2 \mathrm{~d}=12$ $d=6$ $\begin{array}{lll} \text { Put } d=6 \text { in }(1) & a & =16-2 d \\ & =16-2(6) \end{array}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

Q .No	Value Points	Marks
	$\begin{aligned} & =16-12 \\ & =4 \end{aligned}$ Required A.P. is $4,10,16,22-$ - - OR The three digit numbers which when divided by 5 leave the reminder 3 are $103,108,113,----, 998$ Let their number be n, then $\begin{aligned} \mathrm{t}_{\mathrm{n}} & =\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ 998 & =103+(\mathrm{n}-1) 5 \\ & =103+5 \mathrm{n}-5 \\ 5 \mathrm{n} & =998-98 \\ \mathrm{n} & =\frac{900}{\boxed{ }} 180 \\ \mathrm{n} & =180 \end{aligned}$ Now, $\begin{aligned} S_{n} & =\frac{n}{2}[a+\ell] \\ S_{180} & =\frac{180}{2}[103+998] \\ & =90 \times 1101 \\ & =99090 \text { Ans. } \end{aligned}$	
20.	L.H.S. $\begin{aligned} & =\sqrt{\frac{\sec A-1}{\sec A+1}}+\sqrt{\frac{\sec A+1}{\sec A-1}} \\ & =\frac{\sec A-\lambda+\sec A+\nmid}{\sqrt{\sec ^{2} A-1}} \\ & =\frac{2 \sec A}{\sqrt{\tan ^{2} A}} \\ & \left(\therefore \operatorname{Sec}^{2} A-1=\tan ^{2} A\right) \end{aligned}$	$1 / 2$ 1 $1 / 2$

Q .No	Value Points	Marks
	$\begin{aligned} & =\frac{2 \sec A}{\tan A} \\ & =2 \operatorname{cosec} A \\ & =\text { R.H.S. } \end{aligned}$	$1 / 2$ $1 / 2$
21.	By distance formula $\begin{aligned} \mathrm{AB} & =\sqrt{(1+3)^{2}+(-3-0)^{2}} \\ & =\sqrt{4^{2}+(-3)^{2}} \\ & =\sqrt{16+9} \\ & =\sqrt{25} \\ & =5 \text { units } \end{aligned}$ $\mathrm{BC}=\sqrt{(4-1)^{2}+(1+3)^{2}}$ $=\quad \sqrt{3^{2}+4^{2}}$ $=\quad \sqrt{25}$ $=5$ units $\mathrm{AC}=\sqrt{(4+3)^{2}+(1-0)^{2}}$ $=\quad \sqrt{7^{2}+1^{2}}$ $=\sqrt{49+1}=\sqrt{50}=5 \sqrt{2}$ units Since $\quad A B=B C=5$ $\triangle A B C$ is isosceles Now, $\begin{align*} & (\mathrm{AB})^{2}+(\mathrm{BC})^{2} \tag{1}\\ & =5^{2}+5^{2} \\ & =25+25 \\ & =50 \\ & =(\mathrm{AC})^{2} \end{align*}$ \therefore By converse of pythagoras theorem	1 1 $1 / 2$

Q.No	Value Points	Marks
	$\triangle A B C$ is a right triangle (2) From (1) and (2) $\triangle A B C$ is an isosceles right triangle Since the given points are collinear the area of the triangle formed by them must be 0 . $\begin{array}{cc} {\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0} \\ \Rightarrow & 1(1-11)+K(11-5)+4(5-1)=0 \\ \Rightarrow & -10+6 K+4(4)=0 \\ \Rightarrow & 6 K+6=0 \\ \Rightarrow & 6 K=-6 \\ & K=-1 \end{array}$ The required value of $K=-1$	1 $1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
22.	Let the point $P(2,-5)$ divide the line segment joining $A(-3,5)$ and $B(4,-9)$ in the ratio $K: 1$ By Section formula $2=\frac{4 k-3}{k+1}$ $\therefore 2(k+1)=4 k-3$	1/2

Q .No	Value Points	Marks
	$\begin{aligned} -2 k & =-5 \\ k & =\frac{5}{2} \end{aligned}$ \therefore The required ratio is $5: 2$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
23.	For constructing $\triangle \mathrm{ABC}$ For constructing similar traingle to $\triangle A B C$ with given dimensions	1 2
24.	Since the lengths of tangents drawn from an external point to a circle are equal $\begin{array}{ll} \therefore \quad \text { we have } \\ & A F=A E \quad-(1) \\ & B F=B D \quad-(2) \\ C D=C E \quad-(3) \end{array}$ Adding 1, 2 and 3, we get $\begin{array}{ll} A F+B F+C D & =A E+B D+C E \\ A B+C D & =A C+B D \\ \text { But AB } & =A C \text { (given) } \end{array}$ $\therefore \quad C D=B D$	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$

Q .No	Value Points	Marks
25.	Area left uncovered $\begin{aligned} & =\text { Area (Square PQRS) }-2(\text { Area of Semircircle PAQ) } \\ & =\left[(28 \times 28)-2 \frac{1}{2}\left(\frac{22}{7}(14)^{2}\right)\right] \mathrm{m}^{2} \\ & =\left(784-\frac{22}{7} \times 14 \times 14\right) \mathrm{m}^{2} \\ & =(784-616) \mathrm{m}^{2} \\ & =168 \mathrm{~m}^{2} \end{aligned}$	1 1 $1 / 2$ $1 / 2$
Q. 26	We have$\begin{array}{r} 3 x+y-12=0 \\ y=12-3 x \end{array}$$x$ 2 3 4 y 6 3 0 and$\begin{array}{r} x-3 y+6=0 \\ y=\frac{6+x}{3} \end{array}$$x$ 3 6 -6 y 3 4 0	

Q .No	Value Points		Marks
28.	Given, to prove, construction and figure	$1 / 2 \times 4$	2
	Correct Proof		2
	Let the largest side of the larger triangle be $x \mathrm{~cm}$, then		
	$\frac{x^{2}}{27^{2}}=\frac{144}{81} \quad$ (Using the theorem)		1
	$\therefore \mathrm{x}=36 \mathrm{~cm}$		1
	OR		
	Correct given, to prove, construction and figure Correct proof	$1 / 2 \times 4$	$2{ }^{2}$
	Let $\mathrm{AC}=\mathrm{a}$ units		
	then $D C=\frac{a}{2}$ units In rt $\triangle \mathrm{ADC}$, by the above theorem $A D^{2}+D C^{2}=A C^{2}$		$1 / 2$ $1 / 2$
	$\begin{aligned} & A D^{2}=a^{2}-\left(\frac{a}{2}\right)^{2}=a^{2}-\frac{a^{2}}{4} \\ & A D^{2}=3\left(\frac{a}{2}\right)^{2}=3 D C^{2} \\ & \therefore A D^{2}=3 D C^{2} \end{aligned}$		1

\begin{tabular}{|c|c|c|}
\hline Q .No \& Value Points \& Marks \\
\hline \& \begin{tabular}{l}
Total surface area of the container
\[
\begin{array}{ll}
= \& \left(\pi l(R+r)+\pi r^{2}\right) \\
= \& \left(3.14 \times 20(20+8)+3.14(8)^{2} \mathrm{~cm}^{2}\right. \\
= \& 3.14[20 \times 28+64] \mathrm{cm}^{2} \\
= \& 3.14 \times 624 \\
= \& 1959.36 \mathrm{~cm}^{2}
\end{array}
\] \\
Cost of metal Used
\[
\begin{array}{ll}
= \& \text { Rs } 1959.36 \times \frac{5}{100} \\
= \& \text { Rs } 19.5936 \times 5 \\
= \& \operatorname{Rs} 97.968 \\
= \& \operatorname{Rs} 98 \text { (Approx.) }
\end{array}
\]
\end{tabular} \& 1 \\
\hline 30. \& \begin{tabular}{l}
Cumulative Frequency table \\
Given \(n(\) total frequency \()=100\)
\[
\begin{array}{ll}
\Rightarrow \& 100=63+x+y \\
\Rightarrow \& x+y=37 \tag{1}
\end{array}
\] \\
The median is 20.75 which lies in the class 20-25 So, median class is 20-25
\end{tabular} \& 1

$1 / 2$
$1 / 2$
$1 / 2$

\hline
\end{tabular}

Blue Print III

X - Mathematics

Form of Questions Unit	VSA (1 Mark) each	SA-I (2 Marks) each	SA - II (3 Marks) each	LA (6 Marks) each	Total
Number systems	1(1)	--	3(1)	-	4(2)
Algebra	3(3)	2(1)	9(3)	6(1)	20(8)
Trigonometry	1(1)	2(1)	3(1)	6(1)	12(4)
Coordinate Geometry	-	2(1)	6(2)	-	8(3)
Geometry	2(2)	2(1)	6(2)	6(1)	16(6)
Mensuration	1(1)	-	3(1)	6(1)	10(3)
Statistics and Probability	2(2)	2(1)	-	6(1)	10(4)
Total	10(10)	10(5)	30(10)	30(5)	80(30)

Sample Question Paper III

Mathematics - Class X

Time : Three hours
Max. Marks : 80

General Instructions :

1. All Questions are compulsory.
2. The question paper consists of thirty questions divided into 4 sections A, B, C and D. Section A comprises of ten questions of 01 mark each, section B comprises of five questions of 02 marks each, section Comprises of ten questions of 03 marks each and section D comprises of five questions of 06 marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
4. There is no overall choice. However, internal choice has been provided in one question of 02 marks each, three questions of 03 marks each and two questions of 06 marks each. You have to attempt only one of the alternatives in all such questions.
5. In question on construction, drawings should be neat and exactly as per the given measurements.
6. Use of calculators is not permitted. However, you may ask for mathematical tables.

SECTION-A

1. Write 98 as product of its prime factors.
2. In fig. 1 the graph of a polynomial $p(x)$ is given. Find the zeroes of the polynomial.

Fig. 1
3. For what value of k, the following pair of linear equations has infinitely many solutions?

$$
\begin{aligned}
& 10 x+5 y-(k-5)=0 \\
& 20 x+10 y-k=0
\end{aligned}
$$

4. What is the maximum value of $\frac{1}{\operatorname{Sec} \text { è }}$?
5. If $\tan A=\frac{3}{4}$ and $A+B=90^{\circ}$, then what is the value of $\cot B$?
6. What is the ratio of the areas of a circle and an equilateral triangle whose diameter and a side are respectively equal ?
7.

Fig. 2
Two tangents TP and TQ are drawn from an external point T to a circle with centre O , as shown in fig. 2. If they are inclined to each other at an angle of 100° then what is the value of $\angle \mathrm{POQ}$?
8. In fig. 3 what are the angles of depression from the observing positions O_{1} and O_{2} of the object at A ?

Fig. 3
9. A die is thrown once. what is the probability of getting a prime number?
10. What is the value of the median of the data using the graph in fig. 4 , of less than ogive and more than ogive?

Fig. 4

SECTION : B

11. If the $10^{\text {th }}$ term of an A.P. is 47 and its first term is 2 , find the sum of its first 15 terms.
12. Justify the statement : "Tossing a coin is a fair way of deciding which team should get the batting first at the beginning of a cricket game."
13. Find the solution of the pair of equations:

$$
\frac{3}{x}+\frac{8}{y}=-1, \quad \frac{1}{x}-\frac{2}{y}=2, x, y \neq 0
$$

14. The coordinates of the vertices of $\Delta A B C$ are $A(4,1), B(-3,2)$ and $C(0, k)$ Given that the area of $A B C$ is 12 unit 2, find the value of k.
15. Write a quadratic polynomial, sum of whose zeroes is $2 \sqrt{3}$ and their product is 2 .

OR

What are the quotient and the remainder, when $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$ is divided by $x^{2}+3 x+1$?

SECTION-C

16. If a student had walked $1 \mathrm{~km} / \mathrm{hr}$ faster, he would have taken 15 minues less to walk 3 km . Find the rate at which he was walking.
17. Show that $3+5 \sqrt{2}$ is an irrational number.
18. Find he value of k so that the following quadratic equation has equal roots: $2 x^{2}-(k-2) x+1=0$
19. Construct a circle whose radius is equal to 4 cm . Let P be a point whose distance from its centre is 6 cm . Construct two tangents to it from P.
20. Prove that

$$
\frac{\sin \text { è }}{\cot \text { è }+\operatorname{cosec} \text { è }}=2+\frac{\text { sinè }}{\text { cotè }-\operatorname{cosecè}}
$$

OR

Evalute
$\frac{\sec 29^{\circ}}{\operatorname{Cosec} 61^{\circ}}+2 \cot 8^{\circ} \cot 17^{\circ} \cot 45^{\circ} \cot 73^{\circ} \cot 82^{\circ}--3\left(\sin ^{2} 38^{\circ}+\sin ^{2} 52^{\circ}\right)$
21. In fig. 5, $\frac{X P}{P Y}=\frac{X Q}{Q Z}=3$, if the area of $X Y Z$ is $32 \mathrm{~cm}^{2}$, then find the area of the quadrilateral PYZQ.

Fig. 5

OR

A circle touches the side $B C$ of a $\triangle A B C$ at a point P and touches $A B$ and $A C$ when produced at Q and R respecively. Show that
$A Q=\frac{1}{2}$ (Perimeter of $\left.\triangle A B C\right)$
22. Find the ratio in which the line segment joining the points $A(3,-6)$ and $B(5,3)$ is divided by x - axis. Also find the coordinates of the point of intersection.
23. Find a relation between x and y such that the point $P(x, y)$ is equidistant from the points $\mathrm{A}(2,5)$ and $\mathrm{B}(-3,7)$
24. If in fig. 6, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$ are right angled at B and M respectively. prove that $C A \times M P=P A \times B C$

Fig. 6
25. In Fig. 7, OAPB is a sector of a circle of radius 3.5 cm with the centre at O and $\angle A O B=120^{\circ}$. Find the length of OAPBO.

OR

Fig. 7

Find the area of the shaded region of fig. 8 if the diameter of the circle with centre O is 28 cm and $A Q=\frac{1}{4} A B$.

Fig. 8

SECTION-D

[26] Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides the angle opposite to the first side is a right angle. Using the converse of above, determine the length of an attitude of an equilateral triangle of side 2 cm .
[27] Form a pair of linear equations in two variables using the following information and solve it graphically.
Five years ago, Sagar was twice as old as Tiru. Ten year later Sagar's age will be ten years more than Tiru's age. Find their present ages. What was the age of Sagar when Tiru was born?
[28] From the top and foot of a tower 40m high, the angle of elevation of the top of a light house is found to be 30° and 60° respectively. Find the height of the lighthouse. Also find the distance of the top of the lighthouse from the foot of the tower.
[29] A solid is composed of a cylinder with hemispherical ends. If the whole length of the solid is 100 cm and the diameter of the hemispherical ends is 28 cm . find the cost of polishing the surface of the solid at the rate of 5 paise per sq.cm.

OR

An open container made up of a metal sheet is in the form of a frustum of a cone of height 8 cm with radii of its lower and upper ends as 4 cm and 10 cm respectively. Find the cost of oil which can completely fill he container a the rate of Rs. 50 per litre. Also, find the cost of metal used, if it costs Rs. 5 per $100 \mathrm{~cm}^{2}$ (Use $\pi=3.14$)
[30] The mean of the following frequency table is 53 . But the frequencies f_{1} and f_{2} in the classes $20-40$ and $60-80$ are missing. Find the missing frequencies.

Age (in years)	$0-20$	$20-40$	$40-60$	$60-80$	$80-10$	Total
Number of people	15	f_{1}	21	f_{2}	17	100

OR
Find the median of the following frequency distribution:

Marks	Frequency
$0-100$	2
$100-200$	5
$200-300$	9
$300-400$	12
$400-500$	17
$500-600$	20
$600-700$	15
$700-800$	9
$800-900$	7
$900-1000$	4

MARKING SCHEME III
 X MATHEMATICS
 SECTION A

Q .No	Value Points	Marks
1.	2×7^{2}	1
2.	- 3 and -1	1
3.	$\mathrm{k}=10$	1
4	one	1
5.	$\frac{3}{4}$	1
6.	$\pi: \sqrt{3}$	1
7.	$\angle \mathrm{POQ}=80^{\circ}$	1
8	$30^{\circ}, 45^{\circ}$	1
9.	$\frac{1}{2}$	1
10.	4	1
	SECTION B	
11.	Let a be first term and d be the common difference of the A.P.	
	As we known that $a_{n}=a+(n-1) d \Rightarrow 47=2+9 d \Rightarrow d=5$	1
	$\therefore \mathrm{S}_{15}=\frac{15}{2}[2 \times 2+(15-1) 5]=555$	1
12.	When we toss a coin, the outcomes head or tail are equally likely. So that the result of an individual coin toss is completely unpredictable. Hence boh the teams get equal chance to bat first so the given statement is jusified.	1 1
13.	$\begin{equation*} \frac{3}{x}+\frac{8}{y}=-1 \tag{i} \end{equation*}$	

Q .No	Value Points	Marks
	$\begin{equation*} \frac{1}{x}-\frac{2}{y}=2 \tag{ii} \end{equation*}$ \qquad (i) + (ii) $\times 4=\quad \frac{7}{x}=7 \quad \Rightarrow x=1$ From (ii) we get $1-\frac{2}{y}=2 \Rightarrow y=-2$	1 1
14.	$\begin{aligned} & \mathrm{ABC}=\frac{1}{2}[4(2-k)+(-3)(k-1)+0(1-2)]=12 \text { units }^{2} \\ & \Rightarrow \pm 12=\frac{1}{2}[8-4 k-3 k+3] \\ & =-7 k=13,-35 \\ & =k=-\frac{13}{7}, 5 \end{aligned}$	1 $1 / 2$ $1 / 2$
15.	Let the quadratic polynomial be $x^{2}+b x+c$ and its zeroes be α and β then we have $\alpha+\beta=2 \sqrt{3}=-b$ $\alpha \beta=2=c$ $\Rightarrow \mathrm{b}=-2 \sqrt{3}$ and $\mathrm{c}=2$, So a quadratic polynomial which satisfies the given conditions is $x^{2}-2 \sqrt{3} x+2$ OR By long division method Quotient $=3 x^{2}-4 x+2$ Remainder $=0$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $\begin{aligned} & 1 \\ & 1 \end{aligned}$
16.	SECTION C Let the original speed of walking of the student be $x \mathrm{~km} / \mathrm{h}$ Increased speed $=(x+1) \mathrm{km} / \mathrm{h}$ $\therefore \frac{3}{x}-\frac{3}{x+1}=\frac{15}{60}$	$1 / 2$ 1

Q .No	Value Points	Marks
	$\begin{aligned} & \Rightarrow 4 \times 3(x+1-x)=x^{2}+x \\ & \Rightarrow x^{2}+x-12=0 \\ & \Rightarrow(x+4)(x-3)=0 \\ & \Rightarrow x=3, x=-4 \text { (rejected) } \end{aligned}$ \therefore His original speed was $3 \mathrm{~km} / \mathrm{h}$	$1 / 2$ $1 / 2$ $1 / 2$
17.	Let us assume, to the contrary, that $3+5 \sqrt{2}$ is a rational number, say x $\begin{aligned} & \Rightarrow \quad 5 \sqrt{2}=x-3 \\ & \Rightarrow \quad \sqrt{2}=\frac{x-3}{5} \end{aligned}$ Now x, 3 and 5 are all rational numbers $\Rightarrow \frac{x-3}{5}$ is also a rational number $\Rightarrow \quad \sqrt{2}$ is a rational number Prove: $\sqrt{2}$ is not a rational number \therefore Our assumption is wrong Hence $3+5 \sqrt{2}$ is not a rational number	$1 / 2$ $1 / 2$ $11 / 2$ $1 / 2$
18.	Condittion for $a x^{2}+b x+c=0$, have equal roots is $\begin{aligned} & \mathrm{b}^{2}-4 \mathrm{ac}=0 \\ & \therefore[-(k-2)]^{2}-4(2)(1)=0 \\ & \therefore k^{2}-4 k-4=0 \\ & \therefore k=\frac{4 \pm \sqrt{(-4)^{2}-4(\mathrm{l})(-4)}}{2} \\ & \therefore \mathrm{k}=\frac{4 \pm 4 \sqrt{2}}{2} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

\begin{tabular}{|c|c|c|}
\hline Q .No \& Value Points \& Marks \\
\hline \& \(\therefore k=2+2 \sqrt{2} \quad\) or \(\quad k=2-2 \sqrt{2}\) \& 1 \\
\hline 19. \& Construction of circle Location of point P Construction of the tangents \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& 2
\end{aligned}
\] \\
\hline 20. \& \begin{tabular}{l}
\[
\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}
\] \\
is true if
\[
\begin{aligned}
\& \frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}-\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}=2 \\
\& \text { LHS }=\frac{\sin \theta \cot \theta-\sin \theta \operatorname{cosec} \theta-\sin \theta \cot \theta-\sin \theta \operatorname{cosec} \theta}{(\cot \theta+\operatorname{cosec} \theta)(\cot \theta-\operatorname{cosec} \theta)} \\
\& =\frac{-2 \sin \theta \operatorname{cosec} \theta}{\cot ^{2} \theta-\operatorname{cosec}^{2} \theta} \\
\& -\frac{-2\left(\sin \theta \times \frac{1}{\sin \theta}\right)}{-1}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\[
1 / 2
\]
\[
1 / 2
\] \\
1
\end{tabular} \\
\hline \& \[
\begin{array}{lr}
= \& 2 \\
= \& \text { RHS }
\end{array}
\] \& \[
1 / 2
\]
\[
1 / 2
\] \\
\hline \& OR
\[
\begin{aligned}
\& \sec 29^{\circ}=\sec \left(90^{\circ}-61^{\circ}\right)=\operatorname{coses} 61^{\circ}, \quad \cot 17^{\circ}=\cot \left(90^{\circ}-73^{\circ}\right)=\tan 73^{\circ} \\
\& \cot 8^{\circ}=\operatorname{co}\left(90^{\circ}-82\right)=\tan 82^{\circ} \quad \sin ^{2} 38^{\circ}=\sin ^{2}\left(90^{\circ}-52^{\circ}\right)=\cos ^{2} 52^{\circ} \\
\& \cot 45^{\circ}=1 \\
\& \therefore \frac{\sec 29^{\circ}}{\operatorname{cosec} 61^{\circ}}+2 \cot 8^{\circ} \cot 17^{\circ} \cot 82^{\circ} \cot 73^{\circ}-3\left(\sin ^{2} 38+\sin ^{2} 52^{\circ}\right) \\
\& =\frac{\operatorname{cosec} 61^{\circ}}{\operatorname{cosec} 61^{\circ}}+2 \tan 82^{\circ} \tan 73^{\circ} \cot 82^{\circ} \cot 73^{\circ}-3\left(\cos ^{2} 52+\sin ^{2} 52^{\circ}\right)
\end{aligned}
\] \& 1
1

1
$1 / 2$

\hline
\end{tabular}

Q .No	Value Points	Marks
22.	Let the ratio be k : I then the coordinates of the point which divides $A B$ in the ratio $k: 1$ are $\left(\frac{5 \mathrm{k}+3}{\mathrm{k}+1}, \frac{3 \mathrm{k}-6}{\mathrm{k}+1}\right)$ This point lies on x - axis $\begin{aligned} & \frac{3 k-6}{k+1}=0 \\ & \Rightarrow k=2 \end{aligned}$ hence the ratio is $2: 1$ Putting $k=2$ we get the point of intersection $\left(\frac{13}{3}, 0\right)$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
23.	Let $P(x, y)$ be equidistant from the point $A(2,5)$ and $B(-3,7)$. $\begin{aligned} & \therefore A P=B P \text { so } A P^{2}=B P^{2} \\ & (x-2)^{2}+(y-5)^{2}=(x+3)^{2}+(y-7)^{2} \\ & x^{2}-4 x+4+y^{2}-10 y+25=x^{2}+6 x+9+y^{2}-14 y+49 \\ & -10 x+4 y=29 \end{aligned}$ or $10 x-4 y+29=0$ is the required relation	$1 / 2$ $1 / 2$ 1 1
24.	$\begin{aligned} & \Delta \mathrm{AMP} \sim \Delta \mathrm{ABC} \\ & \therefore \frac{\mathrm{PA}}{\mathrm{CA}}=\frac{\mathrm{MP}}{\mathrm{BC}} \\ & \Rightarrow \mathrm{CA} \times \mathrm{MP}=\mathrm{PA} \times \mathrm{BC} \end{aligned}$	1 $11 / 2$ $1 / 2$

Q .No	Value Points	Marks
	SECTION D	
26.	Given, to prove, constand, figure Proof of theorem $A D \perp B C$ $(2 a)^{2}=h^{2}+a^{2}$ $h^{2}=4 a^{2}-a^{2}$ $h=\sqrt{3} a$ $\begin{aligned} & 2 \mathrm{a}=2 \Rightarrow \mathrm{a}=1 \mathrm{~cm} \\ & \therefore \mathrm{~h}=\sqrt{3} \mathrm{~cm} \end{aligned}$	2 2 $1 / 2$

27. Present age of sagar be x yrs \& that of Tiru be y years.

$$
\begin{aligned}
& x-5=2(y-5) \\
& x-2 y+5=0
\end{aligned}
$$

$$
\begin{aligned}
& x+10=(y+10)+10 \\
& x-y-10=0
\end{aligned}
$$

Equations : $1+1$

x	5	15	25
y	5	10	15

x	15	20	25
y	5	10	15

Q .No	Value Points	Marks	
	Since the lines intersect at $(25,15)$	$1 / 2$	
	Sagar's present age $=25$ yrs,	Tiru's present age = 15 yrs.	$1 / 2$

28

For correct figure
Let $A E=h$ metre and $B E=C D=x$ metre
$\therefore \frac{\mathrm{x}}{\mathrm{h}}=\cot 30^{\circ}=\sqrt{3}$
$\Rightarrow \mathrm{x}=\mathrm{h} \sqrt{3} \Rightarrow \mathrm{BE}=\mathrm{CD}=\mathrm{h} \sqrt{3} \mathrm{~m}$
$\frac{h+40}{x}=\tan 60^{\circ}=\sqrt{3}$
$h+40=\sqrt{3} \times h(\sqrt{3})$
$h=20 \mathrm{~m}$
height of lighthouse is $20+40=60 \mathrm{~m}$

$$
\frac{\mathrm{AD}}{\mathrm{AC}}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

$\Rightarrow A C=60 \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow A C=40 \sqrt{3} \mathrm{~m}$
Hence the distance of the top of lighthouse from the foot of the tower is $40 \sqrt{3} \mathrm{~m}$

Q .No	Value Points	Marks
29.	Radius of hemisphere $=14 \mathrm{~cm}$.	
	Length of cylindrical part $=[100-2(14)]=72 \mathrm{~cm}$	1
	radius of cylindrical part = radius of hemispherical ends $=14 \mathrm{~cm}$	1/2
	Total area to be polished	
	$=2$ (C.S.A. of hemispherical ends) + C.S.A. of cylinder	1
	$=2\left(2_{\pi} r^{2}\right)+2_{\pi} \mathrm{rh}$	1
	$=2 \times \frac{22}{7} \times 14(2 \times 14+72)=8800 \mathrm{~cm}^{2}$	1
	Cost of polishing the surface $=$ Rs. 8800×0.05	1
	= Rs. 440	1/2
	The container is a frustum of a cone height 8 cm and radius of the bases 10 cm and 4 cm respectively	
	$\mathrm{h}=8 \mathrm{~cm}, \mathrm{r}_{1}=10 \mathrm{~cm}, \mathrm{r}_{2}=4 \mathrm{~cm}$	
	Slant height $/=\sqrt{8^{2}+(10-4)^{2}}=\sqrt{8^{2}+6^{2}}=10 \mathrm{~cm}$	1
	$\text { Volume of container }=\frac{1}{3} \pi h\left(\mathbf{r}_{1}^{2}+\mathbf{r}_{2}^{2}+\boldsymbol{r}_{1} \mathbf{r}_{2}\right)$	
	$=\frac{1}{3} \times 3.14 \times 8(100+16+40) \mathrm{cm}^{3}$	1
	$=1306.24 \mathrm{~cm}^{3}=1.31 /$ Litres (approx)	1
	Quantity of oil $=1.31 /$ Litres	
	$\begin{aligned} \text { Cost of oil } & =\text { Rs. }(1.31 \times 50) \\ & =\text { Rs. } 65.50 \end{aligned}$	

