

OXIDATION \& REDUCTION

norganic

1. OXIDATION AND REDUCTION

Old Concept of Oxidation
(a) Oxidation is a chemical reaction in which oxygen is added

$$
2 \mathrm{HNO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{HNO}_{3} ; \quad \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}
$$

(b) Hydrogen is removed i.e. hydrogen becomes less

$$
\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} ; \quad \mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(c) Electronegative element is added

$$
2 \mathrm{FeCl}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3} ; \quad 2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{SbCl}_{3}
$$

(d) Electropositive element is removed
$2 \mathrm{NaI}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{NaOH}+\mathrm{I}_{2}$
(e) Valency of electropositive element increases

$$
\mathrm{SnCl}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{SnCl}_{4}
$$

Old Concept of Reduction
(a) Hydrogen is added. For example
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}$
(b) Oxygen is lost. For example

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} \quad \mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

(c) Electropositive element is added. For example $2 \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{SnCl}_{4} \quad \mathrm{CuCl}_{2}+\mathrm{Cu} \longrightarrow \mathrm{Cu}_{2} \mathrm{Cl}_{2}$
(d) Electronegative element is removed. For example
$2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{FeCl}_{2}+2 \mathrm{HCl} \quad \mathrm{PbS}+\mathrm{H}_{2} \longrightarrow \mathrm{~Pb}+\mathrm{H}_{2} \mathrm{~S}$
(e) Valency of electropositive element decreases. For example

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{CuSO}_{4}+\mathrm{Fe} \longrightarrow \mathrm{FeSO}_{4}+\mathrm{Cu} \\
\left(\mathrm{Cu}^{+2}\right)
\end{array} & \begin{array}{l}
\mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{CuCl}_{2}+2 \mathrm{HCl}+\mathrm{S} \\
\left(\mathrm{Fe}^{+3}\right)
\end{array} \\
\left(\mathrm{Fe}^{+2}\right)
\end{array}
$$

Modern Concept of oxidation
The reaction in which an element or an atom or an ion or molecule loses electron is called oxidation. de
electronation is oxidation.
(a) Neutral atom : When a neutral atom loses electron, it gets converted to a positive ion.
$\mathrm{Na} \longrightarrow \mathrm{Na}^{+1}+\mathrm{e}^{-}$
$\mathrm{Al} \longrightarrow \mathrm{Al}^{+3}+3 \mathrm{e}^{-}$
(b) Cation : When a cation loses electron, there is an increase in its positive charge.
$\mathrm{Sn}^{+2} \longrightarrow \mathrm{Sn}^{+4}+2 \mathrm{e}^{-} \quad \mathrm{Hg}^{+1} \longrightarrow \mathrm{Hg}^{+2}+\mathrm{e}^{-}$
(c) Anion : When an anion loses electron equal to its negative charge, it gets converted to a neutral atom.
$2 \mathrm{O}^{-2} \longrightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$
$2 \mathrm{~N}^{-3} \longrightarrow \mathrm{~N}_{2}+6 \mathrm{e}^{-}$
(d) Complex Anion : When a complex anion loses electron, its negative charge decreases.
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}+\mathrm{e}^{-}$
(e) Molecule : When a molecule loses electrons, it breaks up into it constituents.

$$
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}^{+1}+\mathrm{O}_{2}+2 \mathrm{e}^{-}
$$

Therefore in oxidation reactions-
(i) Positive charge increases and negative charge decreases
(ii) Oxidation number increases

Modern Concept of Reduction

The reaction in which an element or an atom or an ion (positive or negative) or a molecule accepts electron, is called reduction. Electronation is reduction.
(a) Neutral Atom :When a neutral element or atom accepts electron, it get converted into an anion.

$$
\mathrm{N}+3 \mathrm{e}^{-} \longrightarrow \mathrm{N}^{-3} \quad \mathrm{~S}+2 \mathrm{e}^{-} \longrightarrow \mathrm{S}^{-2}
$$

(b) Cation : When a cation accepts electron equal to its charge, it gets converted into a neutral atom.

$$
\mathrm{Mg}^{+2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}^{\circ} \quad \mathrm{Al}^{+3}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}^{\circ}
$$

(c) Similarly, when a cation accepts less electrons than its charge, its positive charge decreases. For example

$$
\mathrm{Cu}^{+2}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+1} \quad \mathrm{Fe}^{+3}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{+2}
$$

(d) Anion : When an anion accepts electron, its negative charge increases.

$$
\mathrm{MnO}_{4}^{-1}+\mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{4}^{-2} \quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}+\mathrm{e}^{-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}
$$

(e) Molecule : When a molecule accepts electron, it is a reduction reaction.

$$
\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{O}^{-2} \quad \mathrm{I}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-1}
$$

Therefore in reduction reactions-
(i) Positive charge decreases and negative charge increases
(ii) Oxidation number decreases

2. OXIDANTS

(i) Molecules of most electronegative elements e.g. $\mathrm{O}_{2}, \mathrm{O}_{3}$, halogens
(ii) Compounds having either of an element (under lined) in their highest oxidation state e.g. $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \underline{\mathrm{Cr}}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \underline{\mathrm{SO}}_{4}, \mathrm{HNO}_{3}, \mathrm{FeCl}_{3}, \mathrm{HgCl}_{2}, \mathrm{KClO}_{3}, \mathrm{NaNO}_{3}$ etc.
(iii) Oxides of metals and non metals e.g. $\mathrm{MgO}, \mathrm{CaO}, \mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{3}$, etc.

3. REDUCTANTS

(i) All metals e.g. $\mathrm{Na}, \mathrm{Al}, \mathrm{Zn}$ etc.
(ii) Some non metals e.g. $\mathrm{C}, \mathrm{S}, \mathrm{P}, \mathrm{H}_{2}$ etc.
(iii) Halogen acids e.g. $\mathrm{HI}, \mathrm{HBr}, \mathrm{HCl}$.
(iv) Metallic hydrides e.g. $\mathrm{NaH}, \mathrm{LiH}, \mathrm{CaH}_{2}$ etc.
(v) Compounds having either of an element (under lined) in their lowest oxidation state e.g. $\underline{\mathrm{FeCl}_{2}}, \underline{\mathrm{FeSO}_{4}}, \mathrm{Hg}_{2} \mathrm{Cl}_{2}$, $\mathrm{SnCl}_{2}, \mathrm{Cu}_{2} \mathrm{O}$ etc.
(vi) Some organic compounds e.g. HCOOH , Aldehydes, Oxalic acid, Tartaric acid etc.

4. REDOX REACTIONS

Redox reactions are the chemical reactions which involve both oxidation as well as reduction simultaneously. In fact, oxidation and reduction go hand in hand. The redox reactions are of two types :
(i) Direct redox and (ii) Indirect redox reactions.

When chemical reactions are carried out then some of the species may lose electrons whereas some other may gain electrons. The concept of electron transfer can easily explain in the redox reactions in the case of ionic substances. However, for covalent compounds we use a new term oxidation number to explain oxidation and reduction or redox reactions. Before discussing in detail, some other terms frequently being used are:

5. SPECTATOR IONS

Species that are present in the solution but not take part in the reaction and are also omitted while writing the net ionic reaction are called spectator ions or bystander ions.

$$
\mathrm{Zn}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Zn}^{+2}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2}
$$

In this reaction ions are omitted and are called as spectator ions and appear on the reactant as well as product side.

6. TYPES OF REDOX REACTION

Autoxidation

Turpentine, Phosphorous and metals like Zn and Pb can absorb oxygen from air in the presence of water. The water oxidized to hydrogen peroxide. The phenomena of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by the oxidation of $\mathrm{H}_{2} \mathrm{O}$ is
known as autoxidation. $\mathrm{Pb}+\mathrm{O}_{2} \rightarrow \mathrm{PbO}_{2} ; \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}+\mathrm{H}_{2} \mathrm{O}_{2}$

Disproportionation

One and the same substance may act simultaneously as an oxidising and as a reducing agent. As a result a part of it gets oxidised to higher state and rest of it is reduced to a lower state of oxidation. Such as reaction, in which the substance undergoes simultaneous oxidation and reduction is called disproportionation.

7. OXIDATION NUMBER

1. The definition : Oxidation number of an element in a particular compound represents the number of electrons lost or gained by an element during its change from free state into that compound or Oxidation number of an element in a particular compound represents the extent of oxidation or reduction of an element during its change from free state into that compound.
2. Oxidation number is given positive sign if electrons are lost. Oxidation number is given negative sign if electrons are gained.
3. Oxidation number represents real charge in case of ionic compounds, however, in covalent compounds it represents for imaginary charge.
4. It is the residual charge which an atom appears to have when other atom are withdrawn from the molecules as ions by containing electrons with more electronegative atoms.

The Rule for deriving Oxidation Number
Following arbitrary rules have been adopted to derive Oxidation Number of elements on the basis of periodic properties of elements.

1. In uncombined state or free state, Oxidation Number of an element is zero.
2. In combined state Oxidation Number of \qquad
a. F is always -1.
b. O is -2 ; In peroxides $(-\mathrm{O}-\mathrm{O}-)$ it is -1 and in superoxide $-1 / 2$. However in $\mathrm{F}_{2} \mathrm{O}$, it is +2 .
c.
........ H is 1 ; In ionic hydrides it is -1 .
d. metals is always positive.
e. alkali metals (IA e.g. $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Fr}$) is always +1 .
f. alkaline earth metals (IIA e.g. $\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Ra}$) is always +2 .
g. halogens in halides is always -1 .
h. sulphur in sulphides in always -2 .
3. The algebraic sum of all the Oxidation Number of elements in a compound is equal to zero. e.g. $\mathrm{K}_{2} \mathrm{MnO}_{4}$ $2 \times$ Oxidation Number of $\mathrm{K}+$ Oxidation Number of $\mathrm{Mn}+4$ (Oxidation Number of O) $=0$
4. The algebraic sum of all the Oxidation Numbers of elements in a radical is equal to net charge on that radical e.g. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} .2 \times$ Oxidation Number of $\mathrm{C}+4$ (Oxidation Number of O) $=-2$.
5. Oxidation Number can be zero, +ve, - ve, integer or fraction.
6. Maximum Oxidation Number of an element is (except O \& F) = Group Number. Minimum Oxidation Number of an element is (except metals) = Group Number -8.
Note : Group number in Mendeleef's modern periodic table.
7. The most common oxidation states of some representative elements are given below.
8. Variable oxidation number is most commonly shown by transition elements as well as by p-block elements.

Transition elements : $\mathrm{Fe}(+2 \&+3), \mathrm{Cu}(+1 \&+2), \mathrm{Mn}(+7,+6,+5,+4,+3,+2,+1)$ etc. p-block elements : As (+3 \& +5); Sb (+3 \& +5), Sn (+2 \& +4) etc.

Group	Outer shell configuration	Common Oxidation Number
I gp	$n s^{1}$	$0,+1$
II gp	$n s^{2}$	$0,+2$
III gp	$n s^{2} n p^{1}$	$0,+1,+3$
IV gp	$n s^{2} n p^{2}$	$0, \pm 1, \pm 2, \pm 3, \pm 4$
V gp	$n s^{2} n p^{3}$	$0, \pm 1, \pm 3,+5$
VI gp	$n s^{2} n p^{4}$	$0, \pm 2,+4,+6$
VII gp	$n s^{2} n p^{5}$	$0, \pm 1,+3,+5,+7$
Zero gp	$n s^{2} n p^{6}$	0 (usually)

EXCEPTIONS

(i) Oxidation Number of Cl in $\mathrm{Cl}_{2} \mathrm{O}$ is +1 , because Cl acts as an electropositive element in this.
(ii) Oxidation Number of Cl in $\mathrm{ClF}_{3}=+3$
(iii) Oxidation Number of Cl in $\mathrm{KClO}_{3}=+5$
(iv) Oxidation Number of I in $\mathrm{IF}_{7}=+7$
(v) Oxidation Number of I in $\mathrm{IF}_{5}=+5$

Oxidation Number of Radicals

Oxidation Number of radicals is equal to charge present on them. For example,
(i) Oxidation Number of sulphite $\left(\mathrm{SO}_{3}^{-2}\right)$, sulphate $\left(\mathrm{SO}_{4}^{-2}\right)$, thiosulphate $\left(\mathrm{S}_{2} \mathrm{O}_{3}^{-2}\right)$, oxalate $\left(\mathrm{C}_{2} \mathrm{O}_{4}^{-2}\right)$, carbonate $\left(\mathrm{CO}_{3}^{-2}\right)$, sulphide $\left(\mathrm{S}^{-2}\right)$ is equal to charge (-2) present on each of them.
(ii) Oxidation Number of each of the anions, $\mathrm{Cl}^{-1}, \mathrm{Br}^{-1}, \mathrm{I}^{-1}, \mathrm{NO}_{3}^{-1}, \mathrm{CN}^{-1}, \mathrm{OH}^{-1}, \mathrm{SCN}^{-1}, \mathrm{CH}_{3} \mathrm{COO}^{-1}$ and HCO_{3}^{-1} is -1 .
(iii) Oxidation Number of each of the anions. $\mathrm{PO}_{4}^{-3}, \mathrm{BO}_{3}^{-3}, \mathrm{AsO}_{4}^{-3}$. (Arsenate) and AsO_{3}^{-3} (Arsenite) is -3 .
(iv) Oxidation Number of each of the cations, $\mathrm{CH}_{3}{ }^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$is +1 .
(v) Oxidation Number of each of the cations, $\mathrm{Ca}^{+2}, \mathrm{Mg}^{+2}, \mathrm{Sr}^{+2}$ and Fe^{+2} is +2 .
(vi) Oxidation Number of Al in $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ is +3 .

S-Element

1. S in $\mathrm{H}_{2} \mathrm{~S}$
2. S in SO_{2}

$$
2(1)+x=0
$$

$+2+x=0$
$x=-2$
$x+2(-2)=0$
$x-4=0$
$x=+4$
3. S in SO_{4}^{-2}
$x+4(-2)=-2$
$x-8=-2$
$x=+6$
4. S in SO_{3}^{-2}
$x+3(-2)=-2$
$x-6=-2$
$x=+4$
5. S in SF_{6}
$x+6(-1)=0$
$x-6=0$
$x=+6$
6. S in $\mathrm{H}_{2} \mathrm{SO}_{3}$
$2(-1)+x+3(-2)=0$
$+2+x-6=0$
$x=+4$
7. S in $\mathrm{As}_{2} \mathrm{~S}_{3}$
$2(3)+3 x=0$
$6+3 x=0$
$x=-2$

P-Element

1. Oxidation number of P in $P_{4}=0$
2. P in $\mathrm{PO}_{4}^{-3}: \quad x+4(-2)=-3 \quad x-8=-3, \quad x=+5$
3. P in $\mathrm{NaHPO}_{2}: \quad 1(1)+1(1)++2(-2)=0 \quad+1+1+\mathrm{x}-4=0, \quad \mathrm{x}=+2$
4. P in $\mathrm{H}_{3} \mathrm{PO}_{3}: 3(+1)+x+3(-2)=0 \quad+3+x-6=0, \quad x=+3$
5. P in $\mathrm{Na}_{2} \mathrm{HPO}_{4}: 2(1)+1(1)+x+4(-2)=0+2+1+x-8=0, x=+5$
6. P in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}: 2(2)+2 \mathrm{x}+7(-2)=0 \quad+4+2 \mathrm{x}-14=0, \quad 2 \mathrm{x}=10, \mathrm{x}=+5$

Oxidation Number of Cr in its various compounds

1. Cr in CrO :
2. Cr in $\mathrm{Cr}_{2} \mathrm{O}_{3}$:
3. Cr in CrSO_{4} :
4. Cr in $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$:
5. Cr in $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$:
6. Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$:
7. Cr in $\mathrm{K}_{2} \mathrm{CrO}_{4}$:
8. Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$:
9. Cr in CrO_{4}^{-2} :
10. Cr in $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$:
$x-2=0$,

$$
x=+2
$$

$2 x-6=0$,

$$
x=+3
$$

$$
x-2=0
$$

$$
x=+2
$$

$2 x-6=0$,

$$
x=+3
$$

$2 x-6=0$,

$$
x=+3
$$

$$
2+2 x-14=0
$$

$$
x=+6
$$

$$
2+x-8=0, \quad x=+6
$$

$$
2 x-14=-2, \quad 2 x=12 \quad x=+6
$$

$$
x-8=-2, \quad x=+6
$$

$$
x-2=0, \quad x=+2
$$

(Here, Oxidation Number of NH_{3} is zero)
11. Oxidation Number of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$:

$$
x=+2
$$

12. Oxidation Number of Cr in $\mathrm{Na}_{2} \mathrm{CrO}_{4}:+2+\mathrm{x}-8=0, \quad \mathrm{x}=+6$
13. Oxidation Number of Cr in $\mathrm{Cr}(\mathrm{CO})_{6}$: $\quad x=0$ (Oxidation Number of $\mathrm{Cr}=0$)

Oxidation Number of Mn in its compounds

1. Mn in MnO :
2. Mn in $\mathrm{Mn}_{2} \mathrm{O}_{3}$:
3. Mn in MnSO_{4} :
4. Mn in $\mathrm{Mn}_{2}\left(\mathrm{SO}_{4}\right)_{3}$:
5. Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$:
6. Mn in KMnO_{4} :
7. Mn in $\mathrm{Mn}(\mathrm{CO})_{10}$:
8. Mn in MnO_{4}^{-}
9. Mn in $\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$:
$x-2=0$,
$x=+2$
$2 x-6=0$,
$x=+3$
$x-2=0, \quad x=+2$
$2 x-6=0, \quad x=+3$
$+2+x-8=0, \quad x=+6$
$+1+x-8=0, \quad x=+7$
$x+10(0)=0 \quad x=0$
$x-8=-1 \quad x=+7$
$x-4=0$,

Oxidation state

Oxidation state of an atom is defined as oxidation number per atom.
e.g. In $\mathrm{K}_{2} \mathrm{MnO}_{4}, \quad$ Oxidation number of $\mathrm{Mn}=+6 \quad$ Oxidation state of $\mathrm{Mn}=\mathrm{Mn}^{6+}$

However, for all practical purposes oxidation state is often expressed as oxidation number.

Valency and Oxidation number

Valency of an element represents the power or capacity of the element to combine with the other element.The valency of an element is numerically equal to the number of hydrogen atoms or chlorine atoms or twice the number of oxygen atoms that combine with one atom of that element. It is also equal to the number of electrons lost or accepted or shared by the atoms of an element.

In some cases (mainly in the case of electrovalent compounds), valency and oxidation number are the same but in other cases they may have different values. The difference between the two have been tabulated.

S.No.	Valency	Oxidation number (State)
1.	It is the combining capacity of the element. No plus or minus sign is attached to it.	Oxidation number is the charge (real or imaginary) present on the atom of the element when it is in combination. It may have plus or minus sign. O.
3.	Valency of an element is usually fixed. different values. It depends on the nature of	
4.	Valency of the element is never zero except in noble gases.	Oxidation number of the element may be a whole number or fractional. Oxidation number of the element may be zero.

For example, in the following compounds of carbon, the oxidation number varies from -4 to +4 but valency of carbon is 4 in all the compounds.
Compound
CH_{4}
$\mathrm{CH}_{3} \mathrm{Cl}$
-2
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
0
CHCl_{3}
$+2$
CCl_{4} $+4$

Evaluation of Oxidation Number

Determine Oxidation number of the element underlined in each of the following :
(a) $\mathrm{H}_{2} \mathrm{SO}_{5}$:

$\because \quad 2 \times 1+\mathrm{x}+5 \times(-2)=0 \quad \therefore \quad \mathrm{x}=+8$ (wrong)
But this can not be true as maximum oxidation number for S can not exceed +6 . The exceptional value is
due to the fact that O atom in $\mathrm{H}_{2} \mathrm{SO}_{5}$ show peroxide linkage. Therefore evaluation of oxidation number should be made as :
$2 \times(+1)+x+3 \times(-2)+2 \times(-1)=0$

$$
\begin{array}{llll}
(\text { for } \mathrm{H}) & \text { (for } \mathrm{S}) & \text { (for } \mathrm{O}) & \text { (for } \mathrm{O}-\mathrm{O}) \\
\mathrm{a} & =+6
\end{array}
$$

(b) $\quad \mathrm{NH}_{4} \mathbf{N O}_{3}: 2 \times \mathrm{x}+4 \times 1+3(-2)=0 \quad \therefore \quad \mathrm{x}=+1$ (wrong)

No doubt $\mathrm{NH}_{4} \mathrm{NO}_{3}$ has two N atoms but one N atom has negative Oxidation Number (attached to H) and the other has +ve Oxidation Number (attached to O). Therefore, evaluation should be made separately for $\mathrm{NH}_{4}^{+} \& \quad \mathrm{NO}_{3}{ }^{-}$.
$\mathrm{NH}_{4}^{+} \quad \mathrm{x}+4 \times(+1)=+1 ; \quad \therefore \quad \mathrm{x}=-3$ (Oxidation Number of N in NH_{4}^{+})

```
\(\mathrm{NO}_{3}^{-} \quad \mathrm{x}+3 \times(-2)=-1 ; \quad \therefore \quad \mathrm{x}=+5\) (Oxidation Number of N in \(\mathrm{NO}_{3}^{-}\)
)
```

(c) HEN : The evaluation can not be made directly by using rules since we have no standard rule for oxidatio number of N and C i.e. two values are unknown. In all such cases evaluation of oxidation number should be made by indirect concept or by the original concepts of bonding.
(i) Each covalent bond contributes for one unit value for oxidation number.
(ii) Covalently bonded atom with less electronegativity acquires + ve Oxidation Number whereas other with more electronegativity acquires - ve Oxidation number.
(iii) In case of coordinate bond assign +2 value for Oxidation Number to atom from which coordinate bond is directed to other a more electronegative atom and -2 value to more electronegative atom.
(iv) If coordinate bond is directed from more electronegative atom to less electronegative atom, then neglect contribution for coordinate bond. Thus for $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$.

$$
1+\mathrm{x}+3 \times(-1)=0 ; \quad \therefore \quad \mathrm{x}=+2
$$

Note: $\because \mathrm{N}$ has three covalent bonds and more electronegative than carbon.
\therefore Oxidation Number of $\mathrm{N}=-3$
(d) $\mathbf{H}-\mathbf{N} \equiv \mathbf{C}: \quad 1+(-3)+\mathrm{x}=0 ; \quad \therefore \quad \mathrm{x}=+2$
[The contribution of coordinate bond is neglected because the bond is directed from more electronegative to less electronegative carbon atom.]
(e) $\mathrm{Fe}_{3} \mathrm{O}_{4}$:

$$
3 \times x+4 \times(-2)=0 ; \quad \therefore \quad x=+(8 / 3)
$$

or $\quad \because \quad \mathrm{Fe}_{3} \mathrm{O}_{4}$ is a mixed oxide of $\mathrm{FeO} . \mathrm{Fe}_{2} \mathrm{O}_{3}$
$\therefore \quad$ Fe has two Oxidation Numbers +2 and +3 .
However factually speaking Oxidation Numbers of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is an average value of these two (i.e. +2 \& +3)

Average Oxidation Number $=\frac{1^{2}(+2)+2^{2}(+3)}{3}=+\frac{8}{3}$
(f) $\quad \mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$:

Put sum of Oxidation Numbers of $\mathrm{SO}_{4}=-2$
Sum of Oxidation Numbers in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=0$
Sum of Oxidation Numbers in $\mathrm{H}_{2} \mathrm{O}=0$
$\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right.$ is a complete molecule]
[$\mathrm{H}_{2} \mathrm{O}$ is complete mol-
ecule]

$$
x+(-2)+0+0=0 ; \quad \therefore \quad x=+2
$$

(g) $\mathrm{Fe}_{0.94} \mathrm{O}$:

$$
x \times 0.94+(-2)=0
$$

$$
x=200 / 94
$$

(h) $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]: \mathrm{NO}$ in iron complexes has NO^{+}nature.

$$
\begin{aligned}
& \text { Thus } 2 \times 1+x+5 \times(-1)+1=0 \\
& \text { (for } \mathrm{Na} \text {) } \\
& \text { (for } \mathrm{Fe} \text {) } \text { (for } \mathrm{CN} \text {) }
\end{aligned} \text { (for NO); } \quad \therefore \quad x=+28 .
$$

(i) $\mathrm{FeNO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SO}_{4}$:

$$
x+1+5 \times 0+(-2)=0 ; \quad \therefore \quad x=+1
$$

(j) $\quad \mathrm{Na}_{2} \underline{\mathrm{~S}}_{4} \mathrm{O}_{6}$:

$$
2 \times(+1)+4 x+6 \times(-2)=0 ; \quad \therefore \quad x=+5 / 2
$$

Here also this value is the average oxidation Number of S . The structure of $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ may be written as

Oxidation Number of each S atom in $S-S$ atom involved in pure covalent bond is zero.
Average Oxidation Number $=\frac{+5+5+0+0}{4}=+\frac{5}{2}$
(k) Dimethyl sulphoxide or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$:

Oxidation Number of $\mathrm{CH}_{3}=1$: Oxidation Number of $\mathrm{O}=-2$

$$
\therefore \quad 2 \times(+1)+x+(-2)=0 ; \quad x=0
$$

 (A butterfly structure)

$$
\therefore \quad x+4 \times(-1)+1 \times(-2)=0 ; \quad x=+6
$$

(m) $\quad \mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{6}$:

$$
2 \times 1+3 \times(x)+6 \times(-2)=0
$$

$$
\therefore \quad \mathrm{x}=\frac{10}{3}=+3 \frac{1}{3}
$$

8. BALANCING OF EQUATIONS :

Two methods are generally used to balance a redox equation.
By oxidation state method :
Step I \& II of ion electron methods should be changed accordingly a shown
below in each case (i.e. neutral, acidic or alkaline) medium. The other steps to be followed as usual.
Example: $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{CO}_{2}+\mathrm{K}_{2} \mathrm{O}+\mathrm{MnO}+\mathrm{H}_{2} \mathrm{O}$
Step I Find the oxidation numbers of elements undergoing oxidation reduction

Mn^{7+}	$\longrightarrow \mathrm{Mn}^{2+}$ i.e.	change in Oxidation Number of $\mathrm{Mn}(+7 \longrightarrow+2)=5$
C_{2}^{3+}	change in Oxidation Number of $\mathrm{C}(+6 \longrightarrow+8)=2$	

(a) Acidic Medium : The side which has one, oxygen less is to be provided with $1 \mathrm{H}_{2} \mathrm{O}$ and opposite side by $2 \mathrm{H}^{+}$.
(b) Basic Medium : The side which has one oxygen extra is to be provided with one $\mathrm{H}_{2} \mathrm{O}$ and opposite side by $2\left(\mathrm{OH}^{-}\right)$ions. The side which has one hydrogen extra is to be provided with $1\left(\mathrm{OH}^{-}\right)$and opposite by $1 \mathrm{H}_{2} \mathrm{O}$.

Balancing of half reactions

Example 1: $\mathrm{I}_{2} \longrightarrow \mathrm{IO}_{3}{ }^{-}$(acidic medium)
Step I Balance atoms other than O \& H if needed

$$
\mathrm{I}_{2} \longrightarrow 2 \mathrm{IO}_{3}^{-}
$$

Step II Balance O atoms using $\mathrm{H}^{+} \& \mathrm{H}_{2} \mathrm{O}$ as reported in step 4 of acidic medium earlier

$$
\mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}
$$

Step III Balance charge by electrons

$$
\mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-}
$$

Example 2 : $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow \mathrm{SO}_{2}$ (basic medium)
Step I $\quad \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow 2 \mathrm{SO}_{2}$
Step II $\quad \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ (By $\mathrm{H}_{2} \mathrm{O} \& \mathrm{OH}^{-}$)
Step III $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$

Ion Electron Method :

This method involves three sets of rules depending upon the nature of equation to be balanced in neutral, acidic
or alkaline medium.
(i) Divide the overall reaction into oxidation half and reduction half reactions.
(ii) Balance the half reactions w.r.t. charges and electrons.
(iii) Equalize the electrons lost and gained by multiplying the half reactions with suitable integers. Simultaneously oxygen and Hydrogen will also be balanced.
(iv) Add the two half reactions.

Ex. $\quad \mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{+2} \longrightarrow \mathrm{Mn}^{+2}+\mathrm{Fe}^{+3}+\mathrm{H}^{+}$
Balancing in acidic medium

First half reaction

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2} \\
& \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O} \\
& 8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O} \\
& 5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O} \quad \text { eq.... } 1
\end{aligned}
$$

Multiplying equation 2 with 5 and adding with equation 1

$$
\begin{aligned}
5 \mathrm{Fe}^{+2} & \longrightarrow 5 \mathrm{Fe}^{+3}+5 \mathrm{e}^{-} \\
5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow & \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O} \\
5 \mathrm{Fe}^{+2}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow & 5 \mathrm{Fe}^{+3}+\mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O} \quad \text { Hence equation balanced }
\end{aligned}
$$

9. EQUIVALENT WEIGHT OF OXIDANTS AND REDUCTANTS

By using oxidation number, equivalent weight of oxidising and reducing substance can be determined as follows

Equivalent weight of a oxidant $\quad=\frac{\text { Molecularweightof moleculeorion }}{\text { Electronsacceptedbyonemoleculeorion }}$

$$
\begin{aligned}
& =\frac{\text { Molecularweightof moleculeorion }}{\text { Electronsacceptedbyonemoleculeorion }} \\
& =\frac{\text { Molecular weight of molecule or ion }}{\text { Total change in oxidationnumber }} \\
& =\frac{\text { Molecular weight of molecule or ion }}{\text { Electrons releasedby one molecule or ion }}
\end{aligned}
$$

Second half reaction

$\mathrm{Fe}^{+2} \longrightarrow \mathrm{Fe}^{+3}$
$\mathrm{Fe}^{+2} \longrightarrow \mathrm{Fe}^{+3}+\mathrm{e}^{-}$eq..... 2

Equivalent weight of a reductant

Ex. 1 Oxidation numbers of A, B and C are $+6,-2$ and -1 , respectively. What will be the formula of the molecule when A, B and C associate with each other ?
[1] $\mathrm{AB}_{2} \mathrm{C}_{2}$
[2] ABC_{2}
[3] $\mathrm{AB}_{2} \mathrm{C}$
[4] $\mathrm{A}_{2} \mathrm{BC}$

Sol. The total of positive and negative charge should be zero in the compound.
Thus, compound will be $\mathrm{AB}_{2} \mathrm{C}_{2}$ where $+6-4-2=0$
Ex. $23 \mathrm{CuO}+2 \mathrm{NH}_{3} \longrightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
In the above conversion, the oxidation number of nitrogen is changing in from
[1] +5 to 0
[2] 0 to +2
[3] -3 to 0
[4] -3 to -5

Sol. In $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \longrightarrow \underset{0}{3 \mathrm{Cu}+\mathrm{N}_{2}}+3 \mathrm{H}_{2} \mathrm{O}$
$x+3=0$
$x=-3$
\therefore Change in $0 . \mathrm{s}=-3$ to 0

Ex. 3 Oxidation numbers of the two nitrogen atoms present in ammonium nitrate are respectively?
[1] +3 and +3
[2] 0 and 0
[3] -3 and +5
[4] -1 and -1

Sol. (i) NH_{4}^{+1}
$\mathrm{NO}_{3}{ }^{-1}$
Average oxidation number
$x+4=+1$
$x-6=-1$
$\frac{-3+5}{2}=+1$
$x=-4+1, x=-3 \quad x=+5$
Ex. 4 In the following reaction, $\mathrm{MnO}_{4}^{-1}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$ how many grams of KMnO_{4} should be taken if its 0.5 litre of 0.2 N solution is to be prepared?
[1] 31.6 g
[2] 63.2 g
[3] 158.0 g
[4] 94.8 g

Sol. $\mathrm{MnO}_{4}^{-1} \longrightarrow \mathrm{Mn}^{+2}$
$x-8=-1 \quad x=+2$
$x=+7$
Equivalent weight $=\frac{\text { Molecular weigth }}{\text { Change in oxidation number }} \quad=\frac{158}{5}=31.6 \mathrm{~g}$
Weight in $\mathrm{g}=$ Equivalent weight \times Normality \times Volume $=31.6 \times 0.2 \times 5=31.6 \mathrm{~g}$
Ex. 5 What will be the oxidation state of copper in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$, if oxidation state of (Y) is +3 ?
[1] $7 / 3$
[2] 7
[3] 3 and 5
[4] none of the above

Sol. $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$
$+3+4+3 x-14=0 \quad 3 x=7 \quad x=7 / 3$
Ex. 6 One mole KMnO_{4} oxidises how many moles of ferrous oxalate?
[1] $\frac{1}{5}$
[2] $\frac{5}{3}$
[3] $\frac{1}{3}$
[4] $\frac{2}{3}$

Sol. Reaction is
$\left.\left.5 \mathrm{e}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}\right] \times 3 \quad \mathrm{Fe}^{+2} \rightarrow \mathrm{Fe}^{+3}+\mathrm{e}\right] \times 5$
$\left.\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}\right] \times 5$
$5 \mathrm{Fe}^{+2}+24 \mathrm{H}^{+}+3 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{-} \rightarrow 3 \mathrm{Mn}^{+2}+5 \mathrm{Fe}^{+3}+10 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$
$\because 3$ moles of KMnO_{4} oxidises $=5$ moles $\mathrm{FeC}_{2} \mathrm{O}_{4}$
$\therefore 1$ mole of KMnO_{4} oxidises $=\frac{5}{3}$ moles $\mathrm{FeC}_{2} \mathrm{O}_{4}$
Ans is $1 / 5$

Ex. 7 What should be the oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$?
[1] +5
[2] +6
[3] +4
[4] +7

Sol. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
$+2+2 x-14=0 \quad 2 x=12 \quad x=+6$

Ex. 8 Oxidation number of iodine in the following reaction $\mathrm{IO}_{3}{ }^{-1}+\mathrm{HI} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
[1] increases
[3] increases as well as decreases
Sol. IO_{3}^{-1}
$x-6=-1$
+HI
$+1+x=0$
$x=+5$
$x=-1$
[2] decreases
[4] neither increases nor decrease

Oxidation number decreases from +5 to 0 and increases from -1 to 0
Ex. 9 Oxidation product of $\mathrm{Na}_{3} \mathrm{AsO}_{3}$ is ?
[1] $\mathrm{As}_{2} \mathrm{O}_{3}{ }^{-3}$
[2] AsO_{4}^{-3}
[3] AsO_{3}
[4] AsO_{2}

Sol. $\mathrm{As}_{2} \mathrm{O}_{3}^{-3}$
(Arsenite)
AsO_{4}^{-3}
$x-6=3$
(Arsenate)
$x=+3$
$x-8=-3$
$x=+3 \quad x=+5$
Ex. 10 One mole of $X_{2} \mathrm{H}_{4}$ releases 10 moles of electrons to form a compound Y . What should be the oxidation number of X in the compound Y ?
[1] +3
[2] -3
[3] -6
[4] +1

Sol. $\mathrm{X}_{2} \mathrm{H}_{4}-10 \mathrm{e}^{-} \longrightarrow\left(\mathrm{X}_{2} \mathrm{H}_{4}\right)^{+10}$
$2 x+4=+10$
$2 x=10-4=6$
$x=+3$
Ex. 11 In the presence of humidity, SO_{2}
[1] loses proton
[2] accepts electron
[3] is an oxidant
[4] is a reductant

Sol. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Therefore, it changes from +4 to +6 . Due to this SO_{2} is a reductant.
SO_{2}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$x-4=0$
$+2+x-8=0$
$x=+4$
$x=+6$
Ex. 12 How many moles of nitrogen produced by the oxidation of one mole hydrazine by $\frac{2}{3}$ mole bromate ion?
[1] $\frac{1}{3}$
[2] 1
[3] 1.5
[4] $\frac{2}{3}$

Sol. The balanced equation between $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{BrO}_{3}{ }^{-1}$ is
$3 \mathrm{~N}_{2} \mathrm{H}_{4}+2 \mathrm{BrO}_{3}^{-} \rightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
Dividing by 3, we get : $\quad \frac{3}{3} \mathrm{~N}_{2} \mathrm{H}_{4}+\frac{2}{3} \mathrm{BrO}_{3}^{-} \rightarrow \mathrm{N}_{2}+\frac{2}{3} \mathrm{Br}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
Ans is 1

Ex. 13 How many moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are reduced by 1 mole of formic acid?
[1] $\frac{1}{3}$ Mole
[2] 1 Mole
[3] $\frac{2}{3}$ Mole
[4] $\frac{5}{3}$ Mole

Sol. Equation is
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+8 \mathrm{H}^{+}+3 \mathrm{HCOOH} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
$\because 3$ moles of formic acid reduces $=1$ mole $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\therefore 1$ mole of formic acid reduce $=\frac{1}{3}$ mole $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Ans is $1 / 3$ mole

Ex. $14 \mathrm{WO}_{3}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{W}(\mathrm{CN})_{8}\right]^{4-}+1 / 2 \mathrm{O}_{2}+4 \mathrm{OH}^{-}$In the above process, oxidant is -
[1] WO_{3}
[2] CN^{-}
[3] $\mathrm{H}_{2} \mathrm{O}$
[4] O_{2}

Sol. Oxidation no. of W decreases
O.N. of W in $\mathrm{WO}_{3}=+6$
O.N. of W in $\left[\mathrm{W} /(\mathrm{CN})_{8}\right]^{4-}=+4$
Ans is $\mathbf{W O}_{3}$

Ex. 15 How many ml. of 0.1 M oxalic acid solution is required to reduce 0.01 mole KMnO_{4} to MnO_{2} ?
[1] 250
[2] 150
[1] 100
[4] 500

Sol. $3 \mathrm{e}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+4}+4 \mathrm{H}_{2} \mathrm{O}$
Equivalent weight $=\frac{M}{3} \quad 0.01$ mole $\mathrm{KMnO}_{4}=0.03$ equivalent KMnO_{4}
For oxalic acid: $\quad 0.1 \mathrm{M}$ oxalic acid $=0.2$ equivalent
We have: \quad normality $=($ equivalent $) \times \frac{1000}{V}$
$0.2 \times 0.03 \times \frac{1000}{\mathrm{~V}} \quad \mathrm{~V}=150 \mathrm{ml}$.
Ex. 16 When one mole $\mathrm{NO}_{3}{ }^{-}$is converted into 1 mole $\mathrm{NO}_{2}, 0.5$ mole. N_{2} and 0.5 mole $\mathrm{N}_{2} \mathrm{O}$ respectively. It accepts x , y and z mole of electrons $-x, y$ and z are respectively.
[1] 1, 5, 4
[2] 1, 2, 3
[3] 2, 1, 3
[4] 2, 3, 4

Sol. The equation are :
$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e} \rightarrow 0.5 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NO}_{3}^{-}+5 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow 0.5 \mathrm{~N}_{2} \mathrm{O}+2.5 \mathrm{H}_{2} \mathrm{O}$
$\therefore \mathrm{x}, \mathrm{y}$ and z respectively are 1,5 and 4 .
Ex. 17 Calculate the equivalent weight of potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ in (i) neutral medium (ii) acidic medium (iii) alkaline medium, by oxidation number method.

Sol. (i) $\mathrm{Mn}^{+7}+3 e \rightarrow \mathrm{Mn}^{+4}$; Eq. wt. $=\mathrm{M} / 3$
(ii) $\mathrm{Mn}^{+7}+5 \mathrm{e} \rightarrow \mathrm{Mn}^{+2}$; Eq. wt. $=\mathrm{M} / 5$
(iii) $\mathrm{Mn}^{+7}+1 \mathrm{e} \rightarrow \mathrm{Mn}^{+6}$; Eq. wt. $=\mathrm{M} / 1$

Ex. 18 An element A in a compound $A B D$ has an oxidation no. A^{-n}. It is oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ in acid medium. In an experiment 1.68×10^{-3} mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was required for 3.26×10^{-3} mole of the compound $A B D$. Calculate new oxidation state of A.

Sol. $A^{-n} \longrightarrow A^{+a}+(a+n) e$
$6 \mathrm{e}+\mathrm{Cr}_{2}{ }^{+6} \longrightarrow 2 \mathrm{Cr}^{+3}$
$\therefore \quad$ Meq. of $\mathrm{A}^{-\mathrm{n}}=$ Meq. of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ or $3.26 \times 10^{-3} \times(\mathrm{a}+\mathrm{n})=1.68 \times 10^{-3} \times 6$
$\therefore a+n=3 \quad$ or $\quad a=\mathbf{3}-\mathbf{n}$
Ex. 19 Find out the value of n in $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+\mathrm{ne} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
Sol. $\quad \therefore$ Total charge on L.H.S. $=$ Total charge on R.H.S.
$-1+8-(-n)=+2 ; \quad \therefore \mathrm{n}=5$
Ex. 20 In the reaction $8 \mathrm{Al}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Fe}$
(a) Which element is oxidised or reduced?
(b) Total number of electrons transferred during the change.

Sol. $8 \mathrm{Al}^{0} \rightarrow 4 \mathrm{Al}_{2}^{3+}+24 \mathrm{e}$
$24 \mathrm{e}+3 \mathrm{Fe}_{3}{ }^{(8 / 3)+} \rightarrow 9 \mathrm{Fe}^{0}$
or
$8 \mathrm{Al}^{0}+3 \mathrm{Fe}_{3}{ }^{(8 / 3)+} \rightarrow 4 \mathrm{Al}_{2}^{3+}+9 \mathrm{Fe}$
Reductant is Al i.e. Al is oxidised
Oxidant is $\mathrm{Fe}_{3} \mathrm{O}_{4}$ or $\mathrm{Fe}^{(8 / 3)+}$ i.e. $\mathrm{Fe}^{(8 / 3)+}$ is reduced
Number of electrons used during redox change = $\mathbf{2 4}$
Ex. 21 A student unsuccessfully tried to balance the following equation :
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{3+}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}$. Why could not student balance the equation?
Sol. Both parts are reduction part i.e. Cr^{+6} as well as Fe^{3+} both are reduced without a reductant which is not possible.
Ex. 22 Six moles of Cl_{2} undergo a loss and gain of 10 moles of electrons to form two oxidation state of Cl .
Write down the two half reactions \& find out the oxidation number of each Cl atom involved.
Sol.

$$
\begin{aligned}
6 \mathrm{Cl}_{2} \rightarrow & 2 \mathrm{Cl}^{5+}+10 \mathrm{Cl}^{-} \\
& +5 ; \quad-1 ;
\end{aligned}
$$

Ex. 23 Reaction between 1 mole of HgCl_{2} and 1 mole of SnCl_{2} occurs as follows. $2 \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \rightarrow \mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}$. Which of the following ions will be there after completion of the reaction?
[1] $\mathrm{Hg}^{+1}, \mathrm{Sn}^{+2}, \mathrm{Sn}^{+4}$
[2] $\mathrm{Hg}^{+2}, \mathrm{Sn}^{+2}$
[3] $\mathrm{Sn}^{+2}, \mathrm{Sn}^{+4}$
[4] $\mathrm{Hg}^{+2}, \mathrm{Sn}^{+2}, \mathrm{Sn}^{+4}$

Sol. According to the reaction, 2 mole HgCl_{2} reacts with 1 mole SnCl_{2}. Therefore, 1 mole HgCl_{2} will react with $1 / 2$ mole $\mathrm{SnCl}_{2} \& 1 / 2$ mole SnCl_{2} will be left. Thus, $\mathrm{Sn}^{+4}, \mathrm{Hg}^{+1}$ and Sn^{+2} ions will remain in the solution.

EXERCISE - 1

OXIDATION REDUCTION DEFINITION

1. Reduction is defined as :
[1] Increase in positive valency
[2] Gain of electrons
[3] Loss of protons
[4] Decrease in negative valency
2. $\mathrm{Co}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$. The above reaction is :
[1] Oxidation reaction
[2] Reduction reaction
[3] Redox reaction
[4] None of these
3. Which of the following reactions depict the oxidising behavior of $\mathrm{H}_{2} \mathrm{SO}_{4}$:
[1] $2 \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{POCl}_{3}+2 \mathrm{HCl}+\mathrm{SO}_{2} \mathrm{Cl}_{2}$
[2] $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
[3] $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$
[4] $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
4. In C $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ acts as :
[1] Oxidising agent
[2] Reducing agent
[3] Both
[4] None
5. Reducing agent is that :
[1] Which takes electrons
[2] Which takes protons
[3] Which donates electrons
[4] Which donates protons
6. HBr and HI reduce sulphuric acid. HCl can reduce KMnO_{4} and HF can reduce :
[1] $\mathrm{H}_{2} \mathrm{SO}_{4}$
[2] KMnO_{4}
[3] $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
[4] None of these
7. The compound which gives oxygen on moderate heating is:
[1] Ferric oxide
[2] Zinc oxide
[3] Mercuric oxide
[4] Aluminium oxide
8. In a reaction between zinc and iodine in which zinc iodide is formed, what is being oxidised :
[1] Zinc ions
[2] Iodide ions
[3] Zinc atom
[4] Iodine
9. In the following reactions: $4 \mathrm{P}+3 \mathrm{KOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{KH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
[1] Only phosphorus is oxidized
[2] Only phosphorus is reduced
[3] Phosphorus is both oxidized and reduced
[4] Phosphorus is neither oxidized nor reduced
10. The reaction of $\mathrm{Zn}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$ is an example of :
[1] Oxidatio
[2] Reduction
[3] Redox reaction
[4] None
11. In the reaction $3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$ chlorine is :
[1] Oxidised
[2] Reduced
[3] Oxidised as well as reduced
[4] Neither oxidised nor reduced
12. In the reaction $3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
[1] Bromine is oxidised and carbonate is reduced
[2] Bromine is both reduced and oxidised
[3] Bromine is neither reduced nor oxidised
[4] Bromine is reduced and water is oxidised
13. A gas X bleaches a flower by reduction and another gas Y by oxidation these gases are, respectively
[1] $\mathrm{NH}_{3} \& \mathrm{SO}_{3}$
[2] $\mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{5}$
[3] $\mathrm{SO}_{2} \& \mathrm{Cl}_{2}$
[4] $\mathrm{SO}_{2} \& \mathrm{PCl}_{3}$
14. What will happen when copper rod is dipped in aluminium nitrate solution, if the electropositive properties are as follows: $\mathrm{Al}<\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ag}$
[1] Aluminium will get deposited on the rod
[2] Colour of the solution will becomes blue
[3] Copper aluminium alloy will be formed
[4] No reaction will occur
15. For the reaction: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+6 \mathrm{O}^{2-}$ which of the following is a wrong statement ?
[1] It is an example of redox reaction
[2] Metallic iron reduces to Fe^{3+}
[3] Fe is oxidised
[4] Metallic iron is a reducing agent
16. In the reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+}$ one mole of MnO_{4}^{-}oxidises \qquad moles of NO_{2}^{-}
[1] 5
[2] 5/2
[3] 3
[4] 3/2
17. In the following equation $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+\mathrm{X} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$, then X is
[1] O
[2] $6 \mathrm{e}^{-}$
[3] O_{2}
[4] $5 e^{-}$
18. Which one of the following compounds can act as an oxidising as well as reducing agent -
[1] KMnO_{4}
[2] $\mathrm{H}_{2} \mathrm{O}_{2}$
[3] BaO
[4] $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
19. When acidic solution of ferrous ammonium sulphate is treated with potassium permanganate solution then the ion which is oxidised is -
[1] MnO_{4}^{-}
[2] $\mathrm{NH}_{4}{ }^{+}$
[3] Fe^{2+}
[4] $\mathrm{SO}_{4}{ }^{2-}$
20. The violent reaction between sodium and water is an example of -
[1] Reduction
[2] Oxidation
[3] Redox reaction
[4] Neutralization
21. In the formation of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ form $\mathrm{PbO}_{2}-$
[1] PbO_{2} is oxidised
[2] PbO_{2} is reduced
[3] PbO_{2} is both oxidised and reduced.
[4] PbO_{2} is neither oxidised nor reduced
22. Which of the following s an example of reduction -
[1] $\mathrm{CuO} \rightarrow \mathrm{Cu}_{2} \mathrm{O}$
$[2]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
[3] KI $\rightarrow \mathrm{I}_{2}$
[4] $\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}$
23. Reaction $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ag}^{+}+2 \mathrm{NH}_{4}^{+}$is an example of -
[1] Oxidation
[2] Reduction
[3] Neither oxidation nor reduction
[4] Oxidation and reduction both
24. Which of the following reactions involves neither oxidation nor reduction -
[1] $\mathrm{CrO}_{4}{ }^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
[2] $\mathrm{Cr}^{-} \rightarrow \mathrm{CrCl}_{3}$
[3] $\mathrm{VO}^{2+} \rightarrow \mathrm{V}_{2} \mathrm{O}_{2}$
[4] $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
25. What would happen when a small quantity of $\mathrm{H}_{2} \mathrm{O}_{2}$ is added to a solution of FeSO_{4} -
[1] Colour disappears
[2] H_{2} is evolved
[3] An electron is added to Fe^{++}
[4] An electron is lost by Fe^{++}
26. The reaction $2 \mathrm{TiCl}_{3} \rightarrow \mathrm{TiCl}_{2}+\mathrm{TiCl}_{4}$ example of -
[1] dissociation
[2] disproportionation
[3] reversible reaction
[4] exothermic reaction
27. The anodic reaction in the electrolysis of the aqueous solution of NaCl is -
[1] Oxidation of chloride ion
[2] Evolution of oxygen
[3] reduction of chloride ion
[4] Oxidation of sodium ion.
28. In the reaction -
$2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{S}$
[1] FeCl_{3} is used as an oxidant.
[2] FeCl_{3} and $\mathrm{H}_{2} \mathrm{~S}$ both are oxidised.
[3] FeCl_{3} is oxidised and $\mathrm{H}_{2} \mathrm{~S}$ is reduced.
[4] $\mathrm{H}_{2} \mathrm{~S}$ is used as an oxidant.

RULES OF OXIDATION NUMBER AND OXIDATION NUMBER

29. A compound contains atoms X, Y and Z the oxidation number of X is $+2, Y$ is +5 and Z is -2 therefore a possible formula of the compound is :
[1] $\mathrm{XY} \mathrm{Z}_{2}$
[2] $\mathrm{X}_{2}\left(\mathrm{YZ}_{3}\right)_{2}$
$[3] \mathrm{X}_{3}\left(\mathrm{YZ}_{4}\right)_{2}$
[4] $\mathrm{X}_{3}\left(\mathrm{Y}_{4} \mathrm{Z}\right)_{2}$
30. The atomic number of an element which shows the oxidation state of +3 is :
[1] 13
[2] 32
[3] 33
[4] 17
31. Which of the following is the correct oxidation number of phosphorus in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$:
[1] - 3
[2] +2
[3] +5
[4] +3
32. Oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is :
[1] - 2
[2] +6
[3] +2
[4] - 6
33. Oxidation state of O_{2} in $\mathrm{H}_{2} \mathrm{O}_{2}$ is :
[1] - 2
[2] - 1
[3] + 1
[4] +2
34. If three electrons are lost by a metal ion M^{3+}, its final oxidation number should be :
[1] 0
[2] +6
[3] +2
[4] +4
35. Oxidation number of Fe in $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is :
[1] +2
[2] +3
[3] +1
$[4]+4$
36. Oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{Cl}_{2}$ is :
[1] +1
[2] 0
[3] - 1
$[4]+6$
37. Oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{O}_{2}{ }^{2-}$ is :
[1] - 2
[2] + 1
[3] +6
[4] 0
38. Oxidation number of nitrogen in NH_{3} is :
[1] - 3
[2] +3
[3] 0
[4] +5
39. The oxidation number of nitrogen in $\mathrm{NH}_{2} \mathrm{OH}$ is :
[1] +1
[2] - 1
[3] - 3
[4] - 2
40. Oxidation number of P in $\mathrm{KH}_{2} \mathrm{PO}_{2}$ is :
[1] +1
[2] 6
[3] 4
[4] 7
41. In the compounds KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, the highest oxidation state is of the element :
[1] Potassium
[2] Manganese
[3] Chromium
[4] Oxygen
42. The normal oxidation state of an element is -2 . The number of electrons in its outermost shell will be
[1] 4
[2] 2
[3] 6
[4] 8
43. Oxidation number of Ni in $\mathrm{Ni}(\mathrm{CO})_{4}$ is :
[1] 0
[2] 4
[3] 8
[4] 2
44. The oxidation number of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is :
[1] +3
[2] +5
[3] -3 and +5
[4] + 3 and +5
45. Which of the following halogens always shows only one oxidation state ?
[1] Cl
[2] F
[3] Br
[4] I
46. In which of the following compound oxidation number of Cl is + 3 ?
[1] ICl
[2] ClO_{3}^{-}
[3] ClF_{3}
[4] HClO_{4}
47. The oxidation number of cobalt in $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is -
[1] +3
[2]-3
[3] +6
[4]-6
48. In which of the following compound oxidation number of iron is not +3
[1] $\mathrm{Fe}_{3} \mathrm{O}_{4}$
[2] $\mathrm{Fe}_{2} \mathrm{O}_{3}$
[3] FeCl_{3}
[4] FePO_{4}
49. The oxidation number of Mn in $\mathrm{MnC}_{2} \mathrm{O}_{4}$ is -
[1] +3
[2] $+8 / 3$
[3] +1
[4] +2
50. The correct oxidation number of phosphorus in magnesium pyrophosphate $\left[\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$ is -
[1] +2
[2] +3
[3] - 3
[4] +5
51. Oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is -
[1] +2
[2] +4
[3] +8
[4] +6
52. In which of the following compound, iodine is in its highest oxidation state -
[1] KI
[2] KIO_{4}
[3] KI_{3}
[4] IF_{5}
53. Oxidation number of chlorine in Hypochlorous acid is-
[1] -1
[2] zero
[3] +1
[4] +2
54. The compound in which oxidation state of metal is zero -
[1] $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
[2] $\mathrm{Ni}(\mathrm{CO})_{4}$
[3] $\mathrm{Fe}_{3}(\mathrm{CO})_{9}$
[4] All of the above
55. The oxidation state of phosphorus is +3 in -
[1] Orthophosphorous acid
[3] Pyrophosphoric acid
[2] Orthophosphoric acid
[4] Metaphosphoric acid
56. Which of the following is a true statement -
[1] Oxidation state of oxygen in HOF is zero.
[2] Oxidation state of fluorine in HOF is -1 .
[3] Oxidation state of chlorine in HOCl is +1 .
[4] All of the above.
57. The following reaction is used in the extraction of chromium from its ore
$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{Na}_{2} \mathrm{CO}_{3}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{Na}_{2} \mathrm{CrO}_{4}+4 \mathrm{CO}_{2}$
What is true about the oxidation states of the substance in the reaction -
[1] Chromium is oxidised from +3 to +6 oxidation state.
[2] Iron is reduced from +3 to +2 oxidation state.
[3] Carbon is oxidised from +3 to +4 oxidation state
[4] There is no change in the oxidation states of the substances.
58. Oxidation state of nitrogen is incorrectly given for -
Compounds
Oxidation states
Compounds
Oxidation states
[1] $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

- 3
[2] $\mathrm{NH}_{2} \mathrm{OH}$
- 1
[3] $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$
$+2$
[4] $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
-3

59. Out of the following acids which has different oxidation state of phosphorus as compared to others -
[1] Phosphorous acid
[2] Orthophosphoric acid
[3] Metaphosphoric acid [4] Pyrophosphoric acid
60. The brown ring complex compound is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{+}\right] \mathrm{SO}_{4}$. The oxidation state of iron is -
[1] 1
[2] 2
[3] 3
[4] zero
61. When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from -
[1] 7 to 4
[2] 6 to 4
[3] 7 to 2
[4] 4 to 2
62. The oxidation number of each sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is -
[1] 2.5
[2] 2 and 3 (two S have +2 and the other two have +3)
[3] 2 and 4 (three S have +2 and one S has +4)
[4] 5 and 0 (two S have +5 and the other S have 0)
63. In a triatomic molecule the oxidation states of atoms A, B and C are $+6,+1$ and -2 respectively. The molecular formula of the compound will be -
[1] $\mathrm{B}_{2} \mathrm{AC}_{4}$
[2] $\mathrm{B}_{2} \mathrm{~A}_{2} \mathrm{C}_{7}$
[3] Both of the above.
[4] None of the above
64. Which of the following statements is not correct -
[1] Two mole of electrons are used in the reduction of MnO_{4}^{-}to MnO_{3}^{-}
[2] Three electrons per chromium atom are used in the reduction of dichromate by Fe (II)
[3] The oxidation state of oxygen is $-\frac{1}{2}$ in potassium superoxide.
[4] The oxidation number increases in the process of reduction.

BALANCING EQUATION

65. In acidic medium, reaction : $\mathrm{MnO}_{4}^{-} \rightleftharpoons \mathrm{Mn}^{2+}$ is an example of :
[1] Oxidation by three electrons
[2] Reduction by three electrons
[3] Oxidation by five electrons
[4] Reduction by five electrons
66. In which of the following reaction there is no change in valency
[1] $4 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KClO}_{4}+\mathrm{KCl}$
[2] $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
[3] $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
[4] $2 \mathrm{BaO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BaO}_{2}$
67. In the reaction: $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$
[1] Valency of barium increases
[2] Valency of barium is not changed
[3] Valency of barium becomes zero
[4] Valency of barium decreases
68. A balanced half reaction for the unbalanced whole reaction
$\mathrm{CrO}_{4}^{-2}+\mathrm{SO}_{3}^{-2} \rightarrow \mathrm{CrO}_{2}^{-}+\mathrm{SO}_{4}^{-2}+\mathrm{OH}^{-}$
[1] $2 \mathrm{CrO}_{4}^{-2}+8 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e} \rightarrow 2 \mathrm{CrO}_{2}^{-}+4 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{OH}^{-}$
[2] $2 \mathrm{CrO}_{4}^{-2}+8 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CrO}_{2}^{-}+4 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{OH}^{-}$
[3] $\mathrm{CrO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CrO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{OH}^{-}$
[4] $3 \mathrm{CrO}_{4}^{-2}+4 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e} \rightarrow 2 \mathrm{CrO}_{2}^{-}+8 \mathrm{OH}^{-}$
69. Choose the set of the coefficient that correctly balance the equation

$$
\mathrm{xCr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{yH}^{+}+\mathrm{ze} \rightarrow \mathrm{aCr}^{+3}+\mathrm{bH}_{2} \mathrm{O}
$$

	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{a}	\mathbf{b}		\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{a}	\mathbf{b}
$[1]$	2	14	6	2	7	$[2]$	1	14	6	2	7
$[3]$	2	7	6	2	7	$[4]$	2	7	6	1	7

70. $8 \mathrm{Al}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Fe}$

In the reaction how many total electrons will be transferred
[1] 12
[2] 24
[3] 20
[4] 14
71. How many protons will be added to the right to balance the process $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+2}$
[1] 0
[2] 8
[3] 5
[4] 2
72. Reactions (a and b)
(a) $\mathrm{Fe}^{+3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}^{+2}+\mathrm{O}_{2}$
(b) $\mathrm{Cr}(\mathrm{OH})_{2}+\mathrm{I}_{2} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+2 \mathrm{I}^{-}$

Should be balanced in acidic or basic medium
[1] a (acidic), b (basic) [2] a (acidic), b (acidic)
[3] a (basic), b (basic)
[4] a (basic), b (acidic)
73. In the reaction, $A_{2}^{-n}+x e \rightarrow A_{1}^{-n}$

Here x will be
[1] $n_{1}+n_{2}$
[2] $n_{2}-n_{1}$
[3] $\mathrm{n}_{1}-\mathrm{n}_{2}$
[4] $n_{1} n_{2}$
74. $\mathrm{PbS}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$

The coefficient of the reactants in the balanced state of the equation are
[1] 1, 3
[2] 1, 4
[3] 2, 2
[4] 2, 4

EQUIVALENT MASS

75. In acidic medium equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (molecular weight $=\mathrm{M}$) is :
[1] M / 3
[2] M / 4
[3] M / 6
[4] M / 2
76. In the following reaction
$\mathrm{As}_{2} \mathrm{~S}_{5}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}+\mathrm{NO}_{2}$
The equivalent weight of $\mathrm{As}_{2} \mathrm{~S}_{5}$ is
[1] M/8
[2] M/6
[3] M/40
[4] M/30
77. In a reaction the equivalent weight of KMnO_{4} becomes one third of its molecular weight. The oxidation state of Mn in the final product is
[1] +6
[2] +4
[3] +3
[4] +2
78. The equivalent weight of reducing agent in the reaction
$2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}-$
[1] 17
[2] 212
[3] 16
[4] 6/8
79. In a redox reaction $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ changes to $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. If the molecular weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is M and equivalent weight E then -
[1] $\mathrm{M}=3 \mathrm{E}$
[2] $M=6 E$
[3] $\mathrm{E}=2 \mathrm{M}$
[4] E = 6M
80. $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is oxidised to $\mathrm{Fe}_{2} \mathrm{O}_{3}$. If the molecular weight of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is M and equivalent weight E then -
[1] $E=M$
[2] $E=\frac{M}{3}$
[3] $E=\frac{2}{3} M$
[4] $E=\frac{3}{2} M$

Answer Key

| Qus. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| :---: |
| Ans. | 2 | 3 | 4 | 1 | 3 | 4 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 4 | 2 | 2 | 2 | 2 | 3 | 3 |
| Qus. | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 2}$ | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | $\mathbf{3 7}$ | $\mathbf{3 8}$ | $\mathbf{3 9}$ | $\mathbf{4 0}$ |
| Ans. | 1 | 1 | 3 | 1 | 4 | 2 | 1 | 1 | 3 | 1 | 3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 |
| Qus. | $\mathbf{4 1}$ | $\mathbf{4 2}$ | $\mathbf{4 3}$ | $\mathbf{4 4}$ | $\mathbf{4 5}$ | $\mathbf{4 6}$ | $\mathbf{4 7}$ | $\mathbf{4 8}$ | $\mathbf{4 9}$ | $\mathbf{5 0}$ | $\mathbf{5 1}$ | $\mathbf{5 2}$ | $\mathbf{5 3}$ | $\mathbf{5 4}$ | 55 | 56 | $\mathbf{5 7}$ | 58 | 59 | $\mathbf{6 0}$ |
| Ans. | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 1 | 4 | 4 | 4 | 2 | 3 | 4 | 1 | 4 | 1 | 3 | 1 | 1 |
| Qus. | $\mathbf{6 1}$ | $\mathbf{6 2}$ | $\mathbf{6 3}$ | $\mathbf{6 4}$ | $\mathbf{6 5}$ | $\mathbf{6 6}$ | $\mathbf{6 7}$ | $\mathbf{6 8}$ | $\mathbf{6 9}$ | $\mathbf{7 0}$ | $\mathbf{7 1}$ | $\mathbf{7 2}$ | $\mathbf{7 3}$ | $\mathbf{7 4}$ | $\mathbf{7 5}$ | $\mathbf{7 6}$ | $\mathbf{7 7}$ | $\mathbf{7 8}$ | $\mathbf{7 9}$ | $\mathbf{8 0}$ |
| Ans. | 3 | 4 | 3 | 4 | 4 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 3 | 3 | 2 | 1 | 2 | 1 |

EXERCISE-2

1. Oxidation state of Cr in $\mathrm{Cr}(\mathrm{CO})_{6}$ is -
[AIIMS-93]
[1] 0
[2] +2
[3]-2
[4] +6
2. Oxidation number of Pt in $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}\right]^{-}$is -
[MLNR-93]
[1] +1
[2] +2
[3] +3
[4] +4
3. The brown ring complex is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}_{\mathrm{SO}}^{4}\right.$. The oxidation state of iron is -
[1] +1
[2] +2
[3] +3
[4] 0
[MPPMT-93]
4. The oxidation number of sulphur in $\mathrm{S}_{8}, \mathrm{~S}_{2} \mathrm{~F}_{2}, \mathrm{H}_{2} \mathrm{~S}$ respectively, are -
[IIT-1999]
[1] 0, + 1 and - 2
[2] + 2, +1 and - 2
[3] 0, + 1 and + 2
[4]-2, + 1 and - 2
5. Which of the following is not a reducing agent -
[DCE-2000]
[1] SO_{2}
[2] $\mathrm{H}_{2} \mathrm{O}_{2}$
[3] CO_{2}
[4] NO_{2}
6. Equivalent mass of oxidising agent in the reaction,
[DCE-2000]
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$ is -
[1] 32
[2] 64
[3] 16
[4] 8
7. A, B and C are three element forming a part of compound in oxidation states of $+2,+5$ and -2 respectively. What could be the compound -
[CPMT-

2000]

[1] $\mathrm{A}_{2}(\mathrm{BC})_{2}$
[2] $\mathrm{A}_{2}\left(\mathrm{BC}_{4}\right)_{3}$
[3] $\mathrm{A}_{3}\left(\mathrm{BC}_{4}\right)_{2}$
[4] ABC
8. On reduction of KMnO_{4} by oxalic acid in acidic medium, the oxidation number of Mn changes. What is the magnitude of this change -
[MPPMT-2000]
[1] From 7 to 2
[2] From 6 to 2
[3] From 5 to 2
[4] From 7 to 4
9. The oxidation number of iron in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is -
[CEET-2000]
[1] +2
[2] +3
[3] $8 / 3$
[4] $2 / 3$
10. What is oxidation number of Fe in $\mathrm{Fe}(\mathrm{CO})_{5}$ -
[CPMT-2000]
[1] Zero
[2] 5
[3] -5
[4] +3
11. In $\mathrm{H}_{2} \mathrm{O}_{2}$, the oxidation state of oxygen is -
[CPMT-2000]
[1] -2
[2] - 1
[3] 0
[4] 4
12. In the balanced equation -
[CPMT-2000]
$5 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{XClO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{XCl}^{-}+\mathrm{YO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
The reaction is balanced if
[1] $X=5, Y=2$
[2] $\mathrm{X}=2, \mathrm{Y}=5$
[3] $X=4, Y=10$
[4] $\mathrm{X}=5, \mathrm{Y}=5$
13. Best way to prevent rusting of iron is by -
[DPMT-2000]
[1] making iron cathode
[2] putting it in saline water
[3] both of these
[4] none of these
14. Amongst the following, identify the species with an atom in +6 oxidation state -
[IIT-2000]
[1] MnO_{4}^{-}
[2] $\mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}$
[3] $\mathrm{NiF}_{6}{ }^{2-}$
[4] $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
15. HNO_{3} acts as -
[1] acid
[2] oxidising agent
[3] reducing agent
[4] Both (a) and (b)
16. The reaction,
[IIT-2001]
$3 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
is an example of-
[1] Oxidation reaction
[2] Reduction reaction
[3] Disproportionation reaction
[4] Decomposition reaction.
17. In the standardization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by using iodometry, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
[1] (molecular weight) / 2
[2] (molecular weight) / 6
[3] (molecular weight) / 3
[4] same as molecular weight.
18. The oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is -
[RPMT-2002]
[1] 1.5
[2] 2.5
[3] 3
[4] 2
19. Which of the following is a redox reaction -
[AIEEE-2002]
[1] $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
[2] $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
[3] $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{NH}_{4} \mathrm{OH}$
[4] $\mathrm{Zn}+2 \mathrm{AgCN} \rightarrow 2 \mathrm{Ag}+\mathrm{Zn}(\mathrm{CN})_{2}$
20. When KMnO_{4} acts as an oxidising agent and ultimately forms $\mathrm{MnO}_{4}{ }^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$ and Mn^{2+} then the number of electrons transferred in each case respectively is -
[AIEEE2002]
[1] 4, 3, 1, 5
[2] 1, 5, 3, 7
[3] 1, 3, 4, 5
[4] 3, 5, 7, 1
21. The oxidation state of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is -
[CET-2002]
[1] +2
[2] +6
[3] +3
[4] +4
22. Oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is -
[CET-2002]
[1] +2
[2] +4
$[3]+6$
[4] +7
23. Which reaction is not feasible -
[CPMT-2002]
[1] $2 \mathrm{KI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}$
[2] $2 \mathrm{KBr}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}+\mathrm{Br}_{2}$
[3] $2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$
[4] $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}_{2} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2}$
24. The oxidation state of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is
[AIEEE-
2005]
[1] 0
[2] +1
[3] +2
[4] +3
25. The oxidation state of chromium in the final product formed by the reaction between Kl and acidified potassium dichromate solution is
[AIEEE2005]
[1] +3
[2] +2
[3] +6
[4] +4

Answer Key

Qus.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	1	2	1	1	3	3	2	1	3	1	2	2	1	4	4	3	2	2	4	3
Qus.	21	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$															
Ans.	1	3	2	4	1															

