

OXIDATION & REDUCTION

1. OXIDATION AND REDUCTION

Old Concept of Oxidation

(a) Oxidation is a chemical reaction in which oxygen is added

 $2HNO_2 + O_2 \longrightarrow 2HNO_3;$ $CH_3CHO + O \longrightarrow CH_3COOH$ (b) Hydrogen is removed i.e. hydrogen becomes less $Zn + 2HCI \longrightarrow ZnCl_2 + H_2;$ $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O_3$ (c) Electronegative element is added $2\text{FeCl}_2 + \text{Cl}_2 \longrightarrow 2\text{FeCl}_3;$ $2Sb+3Cl_2 \longrightarrow 2SbCl_3$ (d) Electropositive element is removed $2NaI + H_2O_2 \longrightarrow 2NaOH + I_2$ (e) Valency of electropositive element increases $SnCl_2 + Cl_2 \longrightarrow SnCl_4$ **Old Concept of Reduction** (a) Hydrogen is added. For example $N_2 + 3H_2 \longrightarrow 2NH_3$ $H_2 + CI_2 \longrightarrow 2HCI$ (b) Oxygen is lost. For example $Cr_2O_3 + 2AI \longrightarrow 2Cr + Al_2O_3$ $Fe_2O_3 + 2AI \longrightarrow 2Fe + Al_2O_3$ (c) Electropositive element is added. For example $2HgCl_2 + SnCl_2 \longrightarrow Hg_2Cl_2 + SnCl_4$ $CuCl_2 + Cu \longrightarrow Cu_2Cl_2$ (d) Electronegative element is removed. For example $2\text{FeCl}_3 + \text{H}_2 \longrightarrow 2\text{FeCl}_2 + 2\text{HCl}$ $PbS + H_2 \longrightarrow Pb + H_2S$ (e) Valency of electropositive element decreases. For example $CuSO_4 + Fe \longrightarrow FeSO_4 + Cu$ $FeCl_3 + H_2S \longrightarrow FeCl_2 + 2HCl + S$ (Fe⁺³) (Cu^{+2}) (Cu⁰) (Fe^{+2})

Modern Concept of oxidation

The reaction in which an element or an atom or an ion or molecule loses electron is called **oxidation**. de

electronation is oxidation.

- (a) Neutral atom : When a neutral atom loses electron, it gets converted to a positive ion.
 - $Na \longrightarrow Na^{+1} + e^{-} \qquad AI \longrightarrow AI^{+3} + 3e^{-}$
- (b) Cation : When a cation loses electron, there is an increase in its positive charge. $Sn^{+2} \longrightarrow Sn^{+4} + 2e^{-} \qquad Hg^{+1} \longrightarrow Hg^{+2} + e^{-}$
- (c) Anion : When an anion loses electron equal to its negative charge, it gets converted to a neutral atom. $2O^{-2} \longrightarrow O_2 + 4e^ 2N^{-3} \longrightarrow N_2 + 6e^-$
- (d) Complex Anion : When a complex anion loses electron, its negative charge decreases.

$$[Fe(CN)_{e}]^{-4} \longrightarrow [Fe(CN)_{e}]^{-3} + e^{-1}$$

(e) Molecule : When a molecule loses electrons, it breaks up into it constituents.

 $H_2O_2 \longrightarrow 2H^{+1} + O_2 + 2e^{-1}$

Therefore in oxidation reactions-

(i) Positive charge increases and negative charge decreases

(ii) Oxidation number increases

Modern Concept of Reduction

The reaction in which an element or an atom or an ion (positive or negative) or a molecule accepts electron, is called **reduction**. Electronation is reduction.

- (a) Neutral Atom : When a neutral element or atom accepts electron, it get converted into an anion.
 - $N + 3e^{-} \longrightarrow N^{-3}$ $S + 2e^{-} \longrightarrow S^{-2}$
- (b) Cation : When a cation accepts electron equal to its charge, it gets converted into a neutral atom. $Mg^{+2} + 2e^{-} \longrightarrow Mg^{0}$ $Al^{+3} + 3e^{-} \longrightarrow Al^{0}$
- (c) Similarly, when a cation accepts less electrons than its charge, its positive charge decreases. For example $Cu^{+2} + e^- \longrightarrow Cu^{+1}$ $Fe^{+3} + e^- \longrightarrow Fe^{+2}$
- (d) Anion : When an anion accepts electron, its negative charge increases. $MnO_4^{-1} + e^- \longrightarrow MnO_4^{-2}$ [Fe(CN)₆]⁻³ + e⁻ \longrightarrow [Fe(CN)₆]⁻⁴
- (e) Molecule : When a molecule accepts electron, it is a reduction reaction.

 $O_2 + 4e^- \longrightarrow 20^{-2}$

- $I_2 + 2e^- \longrightarrow 2I^{-1}$
- Therefore in reduction reactions-
- (i) Positive charge decreases and negative charge increases
- (ii) Oxidation number decreases

2. OXIDANTS

- (i) Molecules of most electronegative elements e.g. O₂, O₃, halogens
- (ii) Compounds having either of an element (under lined) in their highest oxidation state e.g.
 - KMnO₄, K₂Cr₂O₇, H₂SO₄, HNO₃, FeCl₃, HgCl₂, KClO₃, NaNO₃ etc.
- (iii) Oxides of metals and non metals e.g. MgO, CaO, CrO₃, H₂O₂, CO₂, SO₃, etc.

3. REDUCTANTS

- (i) All metals e.g. Na, Al, Zn etc.
- (ii) Some non metals e.g. C, S, P, H_2 etc.
- (iii) Halogen acids e.g. HI, HBr, HCl.
- (iv) Metallic hydrides e.g. NaH, LiH, CaH₂ etc.
- (v) Compounds having either of an element (under lined) in their lowest oxidation state e.g. <u>Fe</u>Cl₂, <u>Fe</u>SO₄,<u>Hg</u>₂Cl₂, <u>Sn</u>Cl₂, <u>Cu</u>₂O etc.
- (vi) Some organic compounds e.g. HCOOH, Aldehydes, Oxalic acid, Tartaric acid etc.

4. REDOX REACTIONS

Redox reactions are the chemical reactions which involve both oxidation as well as reduction simultaneously. In fact, oxidation and reduction go hand in hand. The redox reactions are of two types :

(i) Direct redox and (ii) Indirect redox reactions.

When chemical reactions are carried out then some of the species may lose electrons whereas some other may gain electrons. The concept of electron transfer can easily explain in the redox reactions in the case of ionic substances. However, for covalent compounds we use a new term oxidation number to explain oxidation and reduction or redox reactions. Before discussing in detail, some other terms frequently being used are:

5. SPECTATOR IONS

Species that are present in the solution but not take part in the reaction and are also omitted while writing the net ionic reaction are called spectator ions or bystander ions.

$$Zn + 2H^+ + 2CI^- \longrightarrow Zn^{+2} + 2CI^- + H_2$$

In this reaction ions are omitted and are called as spectator ions and appear on the reactant as well as product side.

6. TYPES OF REDOX REACTION

Autoxidation

Turpentine, Phosphorous and metals like Zn and Pb can absorb oxygen from air in the presence of water. The water oxidized to hydrogen peroxide. The phenomena of formation of H_2SO_4 by the oxidation of H_2O is

known as autoxidation. Pb + $O_2 \rightarrow PbO_2$; PbO₂ + H₂O $\rightarrow PbO + H_2O_2$

Disproportionation

One and the same substance may act simultaneously as an oxidising and as a reducing agent. As a result a part of it gets oxidised to higher state and rest of it is reduced to a lower state of oxidation. Such as reaction, in which the substance undergoes simultaneous oxidation and reduction is called disproportionation.

$$H_2 O_2^{-1} + H_2 O_2^{-1} \longrightarrow 2H_2 O^{-2} + O_2^{0}$$

Reduction

7. OXIDATION NUMBER

- 1. The definition : Oxidation number of an element in a particular compound represents the number of electrons lost or gained by an element during its change from free state into that compound or Oxidation number of an element in a particular compound represents the extent of oxidation or reduction of an element during its change from free state into that compound.
- **2.** Oxidation number is given positive sign if electrons are lost. Oxidation number is given negative sign if electrons are gained.
- **3.** Oxidation number represents real charge in case of ionic compounds, however, in covalent compounds it represents for imaginary charge.
- 4. It is the residual charge which an atom appears to have when other atom are withdrawn from the molecules as ions by containing electrons with more electronegative atoms.

The Rule for deriving Oxidation Number

Following arbitrary rules have been adopted to derive Oxidation Number of elements on the basis of periodic properties of elements.

- 1. In uncombined state or free state, Oxidation Number of an element is zero.
- 2. In combined state Oxidation Number of
 - **a.** F is always 1.
 - **b.** O is -2; In peroxides (-O-O-) it is -1 and in superoxide 1/2 .However in F₂O, it is +2.
 - c. H is 1; In ionic hydrides it is -1.
 - d. metals is always positive.
 - e. alkali metals (IA e.g. Li, Na, K, Rb, Cs, Fr) is always + 1.
 - f. alkaline earth metals (IIA e.g. Be, Mg, Ca, Sr, Ba, Ra) is always +2.
 - g. halogens in halides is always 1.
 - h. sulphur in sulphides in always -2.
- **3.** The algebraic sum of all the Oxidation Number of elements in a compound is equal to zero. e.g. K_2MnO_4 2 × Oxidation Number of K + Oxidation Number of Mn + 4 (Oxidation Number of O) = 0
- **4.** The algebraic sum of all the Oxidation Numbers of elements in a radical is equal to net charge on that radical e.g.C₂O₄²⁻. 2 × Oxidation Number of C + 4 (Oxidation Number of O) = -2.
- 5. Oxidation Number can be zero, +ve, ve, integer or fraction.
- **6.** Maximum Oxidation Number of an element is (except O & F) = Group Number.
- Minimum Oxidation Number of an element is (except metals) = Group Number 8.
- Note : Group number in Mendeleef's modern periodic table.

- 7. The most common oxidation states of some representative elements are given below.
- 8. Variable oxidation number is most commonly shown by transition elements as well as by p-block elements.
 - **Transition elements :** Fe (+2 & +3), Cu (+1 & +2), Mn (+7, +6, +5, +4, +3, +2, +1) etc. **p-block elements :** As (+3 & +5); Sb (+3 & +5), Sn (+2 & +4) etc.

Group	Outer shell configuration	Common Oxidation Number
I gp	ns¹	0, +1
II gp	ns ²	0, +2
III gp	ns² np¹	0, +1, +3
IV gp	ns² np²	0, ±1, ±2, ±3, ±4
V gp	ns² np³	0, ±1, ±3, +5
VI gp	ns² np⁴	0, ±2, +4, +6
VII gp	ns² np⁵	0, ±1, +3, +5, +7
Zero gp	ns² np ⁶	0 (usually)

EXCEPTIONS

(i) Oxidation Number of Cl in Cl₂O is +1, because Cl acts as an electropositive element in this.

- (ii) Oxidation Number of CI in $CIF_3 = +3$
- (iii) Oxidation Number of CI in $KCIO_3 = +5$
- (iv) Oxidation Number of I in $IF_7 = +7$
- (v) Oxidation Number of I in $IF_5 = +5$

Oxidation Number of Radicals

Oxidation Number of radicals is equal to charge present on them. For example,

- (i) Oxidation Number of sulphite (SO₃⁻²), sulphate (SO₄⁻²), thiosulphate (S₂O₃⁻²), oxalate (C₂O₄⁻²), carbonate (CO₃⁻²), sulphide (S⁻²) is equal to charge (-2) present on each of them.
- (ii) Oxidation Number of each of the anions, CI^{-1} , Br^{-1} , I^{-1} , NO_3^{-1} , CN^{-1} , OH^{-1} , SCN^{-1} , CH_3COO^{-1} and HCO_3^{-1} is -1.
- (iii) Oxidation Number of each of the anions. PO_4^{-3} , BO_3^{-3} , AsO_4^{-3} . (Arsenate) and AsO_3^{-3} (Arsenite) is -3.

(iv) Oxidation Number of each of the cations, CH_3^+ , NH_4^+ , Na^+ , K^+ is +1.

- (v) Oxidation Number of each of the cations, Ca⁺², Mg⁺², Sr⁺² and Fe⁺² is +2.
- (vi) Oxidation Number of AI in $[AI(H_2O)_6]^{+3}$ is +3.

S-Element

1. S in H_2S	2(1) + x = 0	+2 + x = 0	x = - 2
2. S in SO_2	x + 2(-2) = 0	x - 4 = 0	x = + 4
3. S in SO ₄ ⁻²	x + 4(-2) = -2	x - 8 = -2	x = + 6
4. S in SO_3^{-2}	x + 3(-2) = -2	x - 6 = -2	x = + 4
5. S in SF_6	x + 6(-1) = 0	x - 6 = 0	x = + 6
6. S in H_2SO_3	2(-1) + x + 3(-2) = 0	+2 + x - 6 = 0	x = + 4
7. S in As_2S_3	2(3) + 3x = 0	6 + 3x = 0	x = - 2

P-Element

1. Oxidation number of P in
$$P_4 = 0$$

2. P in PO_4^{-3} : $x + 4$ (-2) = -3 $x - 8 = -3$, $x = +5$
3. P in NaHPO₂: $1(1) + 1(1) + 2(-2) = 0 + 1 + 1 + x - 4 = 0$, $x = +2$

4. P in H_3PO_3 : $3(+1) + x + 3(-2) = 0$	+ 3 + x - 6 = 0,	x = + 3
5. P in Na ₂ HPO ₄ : 2(1) + 1(1) + x + 4(-2) = 0	+ 2 + 1 + x - 8 = 0,	x = + 5
6. P in $Mg_2P_2O_7$: 2(2) + 2x + 7(-2) = 0	+ 4 + 2x - 14 = 0,	2x = 10, x = +5

Oxidation Number of Cr in its various compounds

1. Cr in CrO :	x-2=0,	x = + 2
2. Cr in Cr_2O_3 :	2x-6=0,	x = + 3
3. Cr in CrSO ₄ :	x-2=0,	x = + 2
4. Cr in $Cr_2(SO_4)_3$:	2x - 6 = 0,	x = + 3
5. Cr in CrO_2Cl_2 :	2x-6=0,	x = + 3
6. Cr in $K_2 Cr_2 O_7$:	2 + 2x - 14 = 0,	x = + 6
7. Cr in $K_2 CrO_4$:	2 + x - 8 = 0,	x = + 6
8. Cr in $Cr_2O_7^{-2}$:	2x - 14 = -2, $2x = 12$	x = + 6
9. Cr in CrO_4^{-2} :	x - 8 = -2,	x = + 6
10. Cr in Cr $(NH_3)_4SO_4$:	x-2=0,	x = + 2
(Here, Oxidation Number of	NH ₃ is zero)	
11. Oxidation Number of Cr	in [Cr(NH ₃) ₄] ⁺² :	x = + 2
12. Oxidation Number of Cr	in $Na_2CrO_4 : +2 + x - 8 = 0$,	x = + 6
13. Oxidation Number of Cr	in Cr(CO) ₆ :	x = 0
(Oxidation Number of Cr	= 0)	

Oxidation Number of Mn in its compounds

x - 2 = 0,	x = + 2
2x - 6 = 0,	x = + 3
x-2=0,	x = + 2
2x - 6 = 0,	x = + 3
+2 + x - 8 = 0,	x = + 6
+1 + x - 8 = 0,	x = + 7
x + 10(0) = 0	x = 0
x - 8 = -1	x = + 7
x - 4 = 0,	x = + 4
	2x - 6 = 0, x - 2 = 0, 2x - 6 = 0, +2 + x - 8 = 0, +1 + x - 8 = 0, x + 10(0) = 0 x - 8 = -1

Oxidation state

Oxidation state of an atom is defined as oxidation number per atom. e.g. In K_2MnO_4 , Oxidation number of Mn = +6 Oxidation state of Mn = Mn⁶⁺ However, for all practical purposes oxidation state is often expressed as oxidation number.

Valency and Oxidation number

Valency of an element represents the power or capacity of the element to combine with the other element. The valency of an element is numerically equal to the number of hydrogen atoms or chlorine atoms or twice the number of oxygen atoms that combine with one atom of that element. It is also equal to the number of electrons lost or accepted or shared by the atoms of an element.

In some cases (mainly in the case of electrovalent compounds), valency and oxidation number are the same but in other cases they may have different values. The difference between the two have been tabulated.

S.No.	Valency	Oxidation number (State)
1.	It is the combining capacity of the element.	Oxidation number is the charge (real or imaginary)
	No plus or minus sign is attached to it.	present on the atom of the element when it is in combination. It may have plus or minus sign.
2.	Valency of an element is usually fixed.	Oxidation number of an element may have
		different values. It depends on the nature of
		compound in which it is present.
3.	Valency is always a whole number.	Oxidation number of the element may be a whole
		number or fractional.
4.	Valency of the element is never zero except	Oxidation number of the element may be zero.
	in noble gases.	

For example, in the following compounds of carbon, the oxidation number varies from -4 to +4 but valency of carbon is 4 in all the compounds.

Compound	CH_4	CH₃CI	CH_2CI_2	CHCl ₃	CCI_4
Oxidation number of carbon	- 4	- 2	0	+ 2	+ 4

Evaluation of Oxidation Number

Determine Oxidation number of the element underlined in each of the following :

 \therefore 2 x 1 + x + 5 x (-2) = 0

 \therefore x = +8 (wrong)

But this can not be true as maximum oxidation number for S can not exceed +6. The exceptional value is

due to the fact that O atom in H_2SO_5 show peroxide linkage. Therefore evaluation of oxidation number should be made as :

$$2 \times (+1) + x + 3 \times (-2) + 2 \times (-1) = 0$$

(for H) (for S) (for O) (for O - O) $a = +6$

 $\underline{\mathbf{NH}}_{\underline{A}}\underline{\mathbf{NO}}_{3}:2 \times x + 4 \times 1 + 3 \quad (-2) = 0 \qquad \qquad \therefore \qquad x = +1 \quad (\text{wrong})$

(b)

No doubt NH_4NO_3 has two N atoms but one N atom has negative Oxidation Number (attached to H) and the other has +ve Oxidation Number (attached to O). Therefore, evaluation should be made separately for NH_4^+ & NO_3^- .

 NH_4^+ x + 4 x (+1) = + 1; \therefore x = -3(Oxidation Number of N in NH_4^+)

NO₃⁻
$$x + 3 \times (-2) = -1;$$
 $\therefore x = +5$ (Oxidation Number of N in NO₃⁻)

(c) H<u>C</u>N: The evaluation can not be made directly by using rules since we have no standard rule for oxidatio number of N and C i.e. two values are unknown. In all such cases evaluation of oxidation number should be made by indirect concept or by the original concepts of bonding.

(i) Each covalent bond contributes for one unit value for oxidation number.

(ii) Covalently bonded atom with less electronegativity acquires +ve Oxidation Number whereas other with more electronegativity acquires – ve Oxidation number.

(iii) In case of coordinate bond assign +2 value for Oxidation Number to atom from which coordinate bond is directed to other a more electronegative atom and -2 value to more electronegative atom.

(iv) If coordinate bond is directed from more electronegative atom to less electronegative atom, then neglect contribution for coordinate bond. Thus for $H - C \equiv N$.

$$1 + x + 3 \times (-1) = 0;$$
 $\therefore x = +2$

Note : \therefore N has three covalent bonds and more electronegative than carbon.

 \therefore Oxidation Number of N = - 3

(d)
$$H - N \equiv \underline{C}$$
: $1 + (-3) + x = 0;$

[The contribution of coordinate bond is neglected because the bond is directed from more electronegative to less electronegative carbon atom.]

 \therefore x = + 2

(e)
$$\underline{Fe}_{3}O_{4}$$
: $3 \times x + 4 \times (-2) = 0$; $\therefore x = + (8/3)$
or $\because Fe_{3}O_{4}$ is a mixed oxide of FeO. $Fe_{2}O_{3}$
 \therefore Fe has two Oxidation Numbers +2 and +3.

However factually speaking Oxidation Numbers of Fe in Fe_3O_4 is an average value of these two (i.e. +2 & +3)

Average Oxidation Number $=\frac{1^{2}(+2)+2^{2}(+3)}{3}=+\frac{8}{3}$

(f) FeSO₄ (NH₄)₂SO₄ ·
$$6H_2O$$
 :

	Put sum of Oxidation Numbers of $SO_4 = -2$	
	Sum of Oxidation Numbers in $(NH_4)_2SO_4 = 0$	$[(NH_4)_2SO_4$ is a complete molecule]
	Sum of Oxidation Numbers in $H_2O = 0$	[H ₂ O is complete mol-
e]		

ecule]

$$x + (-2) + 0 + 0 = 0;$$
 $\therefore x = +2$

(g) $\underline{Fe}_{0.94}O$: $x \times 0.94 + (-2) = 0$; x = 200/94(h) $Na_2[\underline{Fe}(CN)_5NO]$: NO in iron complexes has NO⁺ nature. Thus $2 \times 1 + x + 5 \times (-1) + 1 = 0$ (for Na) (for Fe) (for CN) (for NO); $\therefore x = +2$ (i) $\underline{Fe}NO(H_2O)_5SO_4$: $x + 1 + 5 \times 0 + (-2) = 0$; $\therefore x = +1$

(j) $Na_2 \underline{S}_4 O_6$:

$$2 \times (+1) + 4x + 6 \times (-2) = 0;$$
 $\therefore \quad x = + \frac{5}{2}$

Here also this value is the average oxidation Number of S. The structure of $Na_2S_4O_6$ may be written as

 $\overset{+}{Na} \begin{bmatrix} O & O \\ \parallel & \parallel \\ -\bar{O} - S - S - S - S - \bar{O} - \\ \parallel & \parallel \\ O & O \end{bmatrix}^{+} \overset{+}{Na}$

Oxidation Number of each S atom in S - S atom involved in pure covalent bond is zero.

Average Oxidation Number $=\frac{+5+5+0+0}{4}=+\frac{5}{2}$

:..

- (k) Dimethyl sulphoxide or $(CH_3)_2 \underline{SO}$: Oxidation Number of $CH_3 = 1$: Oxidation Number of O = -2 $\therefore 2 \times (+1) + x + (-2) = 0;$ x = 0
- (I) <u>**Cr</u>O₅ : The structure of CrO₅ has two peroxide bonds \begin{array}{c} O & O \\ | \ Cr & O \\ O & | \\ O & O \end{array} (A butterfly structure)</u>**

$$x + 4 \times (-1) + 1 \times (-2) = 0;$$
 $x = +6$

(m) $\operatorname{Na}_{2}\underline{S}_{3}O_{6}$: $2 \times 1 + 3 \times (x) + 6 \times (-2) = 0;$ $\therefore \quad x = \frac{10}{3} = +3\frac{1}{3}$

8. BALANCING OF EQUATIONS :

:

Two methods are generally used to balance a redox equation.

By oxidation state method :

Step I & II of ion electron methods should be changed accordingly a shown

below in each case (i.e. neutral, acidic or alkaline) medium. The other steps to be followed as usual.

Example : $KMnO_4 + H_2C_2O_4 \longrightarrow CO_2 + K_2O + MnO + H_2O_2O_4$

Step I Find the oxidation numbers of elements undergoing oxidation reduction

- $Mn^{7+} \longrightarrow Mn^{2+}$ i.e. change in Oxidation Number of Mn (+7 \longrightarrow +2) = 5
- $C_2^{3+} \longrightarrow 2C^{4+}$ i.e. change in Oxidation Number of C (+6 \longrightarrow +8) = 2

Step II Thus $2Mn^{7+} + 5C_2^{3+} \longrightarrow 2Mn^{2+} + 10C^{4+}$

(a) Acidic Medium : The side which has one, oxygen less is to be provided with $1 \text{ H}_2\text{O}$ and opposite side by 2H^+ . (b) Basic Medium : The side which has one oxygen extra is to be provided with one H₂O and opposite side by $2(\text{OH}^-)$ ions. The side which has one hydrogen extra is to be provided with $1(\text{OH}^-)$ and opposite by $1\text{H}_2\text{O}$.

Balancing of half reactions

Example 1 : $I_2 \longrightarrow IO_3^-$ (acidic medium)

Step I Balance atoms other than O & H if needed

 $I_2 \longrightarrow 2IO_3^-$

Step II Balance O atoms using H⁺ & H₂O as reported in step 4 of acidic medium earlier I₂ + 6H₂O \longrightarrow 2IO₃⁻ + 12H⁺

Step III Balance charge by electrons

	$I_2 + 6H_2O \longrightarrow 2IO_3^- + 12H^+ + 10e^-$	
Example 2 :	$S_2O_3^{2-} \longrightarrow SO_2$ (basic medium)	
Step I	$S_2O_3^{2-} \longrightarrow 2SO_2$	
Step II	$S_2O_3^{2-}$ + 20H ⁻ \longrightarrow 2SO ₂ + H ₂ O	(By H ₂ O & OH⁻)
Step III	$S_2O_3^{2-}$ + 20H ⁻ \longrightarrow 2SO ₂ + H ₂ O + 4e ⁻	

Ion Electron Method :

This method involves three sets of rules depending upon the nature of equation to be balanced in neutral, acidic

or alkaline medium.

(i) Divide the overall reaction into oxidation half and reduction half reactions.

(ii) Balance the half reactions w.r.t. charges and electrons.

(iii) Equalize the electrons lost and gained by multiplying the half reactions with suitable integers. Simultaneously oxygen and Hydrogen will also be balanced.

Second half reaction

(iv) Add the two half reactions.

Ex.
$$MnO_4^- + Fe^{+2} \longrightarrow Mn^{+2} + Fe^{+3} + H^+$$

Balancing in acidic medium

First half reaction

9. EQUIVALENT WEIGHT OF OXIDANTS AND REDUCTANTS

By using oxidation number, equivalent weight of oxidising and reducing substance can be determined as follows

Equivalent weight of a oxidant	_	Molecularweightof moleculeorion			
Equivalent weight of a oxidant		Electronsacceptedbyonemoleculeorion			
	=	Molecular weight of molecule or ion Total change in oxidation number			
Equivalent weight of a reductant	=	Molecular weight of molecule or ion Electrons released by one molecule or ion			

SOLVED EXAMPLE

Ex.1	Oxidation numbers of A, B and C are $+6$, -2 and -1 , respectively. What will be the formula of the molecule when A, B and C associate with each other ?					
	[1] AB ₂ C ₂	[2] ABC ₂	[3] AB ₂ C	[4] A ₂ BC		
Sol.	E E	negative charge should be ze	2	• • 2		
	Thus, compound will be AB ₂ C ₂ where $+6 - 4 - 2 = 0$					
Ex.2	$3CuO + 2NH_3 \longrightarrow 3Cu$					
	0	the oxidation number of nitro	ogen is changing in from			
	[1] +5 to 0	[2] 0 to +2	[3] –3 to 0	[4] –3 to –5		
Cal						
501.	$\ln 3CuO + 2NH_3 \longrightarrow 3$	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -				
	x+ 3 = 0	x = -3	\therefore Change in 0.s = - 3 to	0		
Fy 3		e two nitrogen atoms present	-			
LX.5	[1] +3 and +3	[2] 0 and 0	[3] –3 and +5	[4] –1 and –1		
Sol		NO_3^{-1}	Average oxidation numb			
301.	(i) NH_4^{+1}		-			
	X + 4 = +1	x - 6 = -1	$\frac{-3+5}{2} = +1$			
			2			
	x = −4 + 1, x = −3	C+ = X				
Ex.4	In the following reaction,	$MnO_4^{-1} + 8H^+ + 5e^- \longrightarrow M$	n ⁺² + 4H ₂ O how many gram	s of KMnO ₄ should be taken		
	if its 0.5 litre of 0.2 N sol	ution is to be prepared ?				
	[1] 31.6 g	[2] 63.2 g	[3] 158.0 g	[4] 94.8 g		
Sol	$MnO_4^{-1} \longrightarrow Mn^{+2}$	[-] 00:- 9	[0] 10010 9	[.] •• 9		
501.	·					
	x - 8 = -1 $x = +2$					
	x = +7					
	Equivalent weight	Molecular weigth ange in oxidation number	$-\frac{158}{3}$ - 31.6 g			
	Weight in g = Equivalent	weight × Normality × Volume	$e = 31.6 \times 0.2 \times 5 = 31.6$	g		
Ex.5	What will be the oxidatio	n state of copper in YBa ₂ Cu ₃ C	D_{7} , if oxidation state of (Y)	is +3 ?		
	[1] 7/3	[2] 7	[3] 3 and 5	[4] none of the above		
Sol.	YBa ₂ Cu ₃ O ₇					
	+3 + 4 + 3x - 14 = 0	3x = 7	x = 7/3			
Ex.6	One mole KMnO ₄ oxidise	es how many moles of ferrous	s oxalate ?			
	1	5	1	2		
	[1] $\frac{1}{5}$	$[2] \frac{5}{3}$	[3] $\frac{1}{3}$	[4] $\frac{2}{3}$		
Sol.	Reaction is					
	5e + 8H ⁺ + MnO ₄ ⁻ \rightarrow Mn ⁻	⁺² + 4H₂O] × 3	$Fe^{+2} \rightarrow Fe^{+3} + e] \times 5$			
	$C_2O_4^{-2} \rightarrow 2CO_2 + 2e] \times 5$	-	-			
		$5 \text{ C}_2 \text{O}_4^- \rightarrow 3 \text{Mn}^{+2} + 5 \text{Fe}^{+3} + 1$	0CO, + 12H,O			
	\therefore 3 moles of KMnO ₄ oxi		2 2 -			
	\therefore 1 mole of KMnO ₄ oxid	ises = $\frac{3}{3}$ moles FeC ₂ O ₄	Ans is 1/5			
	0					

Ex.7	What should be the oxidation number of S in $H_2S_2O_7$?					
	[1] +5		[2] +6		[3] +4	[4] +7
Sol.	$H_2S_2O_7$					
	+2 + 2x - 14 =	0	2x = 12		x = +6	
	0 0 +-0-\$-0-\$-(0 0	H–C				
Ex.8	Oxidation num	ber of iodi	ne in the following	reaction IO	$H_3^{-1} + HI \longrightarrow H_2O + I_2$	
	[1] increases				[2] decreases	
	[3] increases as	s well as d	ecreases		[4] neither increases no	or decrease
Sol.	10 ₃ ⁻¹		+ HI	\rightarrow	H ₂ O	+ l ₂
	x - 6 = -1				x = 0	x = 0
	x = +5		x = -1			
			ises from +5 to 0 a	and increase	es from –1 to 0	
Ex.9	Oxidation prod	uct of Na ₃ /			[0] A - O	
Col	$[1] As_2 O_3^{-3}$		$[2] AsO_4^{-3}$		[3] AsO ₃	[4] AsO ₂
501.	$As_2O_3^{-3}$ (Arsenite)		AsO_4^{-3} (Arsenate)			
	x - 6 = 3		x - 8 = -3			
	x = +3		x = +5			
Ex.10		H, release		trons to form	a compound Y. What sh	ould be the oxidation number
	of X in the con					
	[1] +3		[2] –3		[3] –6	[4] +1
Sol.	$X_{2}H_{4} - 10e^{-}$ —	\rightarrow (X ₂ H ₄) ⁺¹	0			
	2x + 4 = +10		2x = 10 - 4 = 6		x = +3	
Ex.11	In the presence	e of humid	ity, SO ₂			
	[1] loses protor	ı	[2] accepts elect	ron	[3] is an oxidant	[4] is a reductant
Sol.	$SO_{2} + H_{2}O + O$	$H_2 \longrightarrow H_2$	SO4			
	Therefore, it ch	anges froi	m +4 to +6. Due to	this SO_2 is	a reductant.	
	SO ₂	H_2SO_4				
	x - 4 = 0	+2 + x– 8	8 = 0			
	x = +4	x = +6				
Ex.12	Ex.12 How many moles of nitrogen produced by the oxidation of one mole of hydrazine by $\frac{2}{3}$ mole bromate ion ?					
	[1] $\frac{1}{3}$		[2] 1		[3] 1.5	$[4] \frac{2}{3}$
Sol.	The balanced e	equation be	etween N_2H_4 and E	BrO_3^{-1} is		
	$3N_{2}H_{4} + 2BrO_{3}$	$\rightarrow 3N_2 + 2$	2Br⁻ + 6H₂O			
	Dividing by 3, v	we get :	$\frac{3}{3}$ N ₂ H ₄ + $\frac{2}{3}$ B	$rO_3^- \rightarrow N_2^+$	$\frac{2}{3}$ Br + 2H ₂ O	Ans is 1

 $\mbox{Ex.13}$ How many moles of $\mbox{K}_2\mbox{Cr}_2\mbox{O}_7$ are reduced by 1 mole of formic acid ?

$$\begin{bmatrix} 1 \end{bmatrix} \frac{1}{3} \text{ Mole} \qquad \begin{bmatrix} 2 \end{bmatrix} 1 \text{ Mole} \qquad \begin{bmatrix} 3 \end{bmatrix} \frac{2}{3} \text{ Mole} \qquad \begin{bmatrix} 4 \end{bmatrix} \frac{5}{3} \text{ Mole} \\ \end{bmatrix}$$
Sol. Equation is

$$Cr_{2}O_{7}^{-2} + 8H^{+} + 3HCOOH \rightarrow 2Cr^{3+} 3CO_{2} + 7H_{2}O \\ \therefore 3 \text{ moles of formic acid reduces = 1 mole K_{2}Cr_{2}O, \qquad Ans is 1/3 mole \\ \end{bmatrix}$$

$$Ex.14 \text{ WO}_{3} + 8CN^{+} + 2H_{2}O \rightarrow [W(CN)]_{0}^{1+} + 1/2 O_{2} + 4OH^{-1} \text{ In the above process, oxidant is -} \\ \begin{bmatrix} 1 \end{bmatrix} WO_{3} \qquad \begin{bmatrix} 2 \end{bmatrix} CN^{-} \qquad \begin{bmatrix} 3 \end{bmatrix} H_{2}O \qquad \begin{bmatrix} 4 \end{bmatrix} O_{2} \\ \end{bmatrix} \\ \end{bmatrix} \\ O_{2} \\ \end{bmatrix} \\ \text{Sol. Oxidation no. of W decreases} \\ O.N. of W in WO_{5} = +6 \quad O.N. of W in [W/(CN)_{0}]^{+} = +4 \qquad Ans is WO_{3} \\ \end{bmatrix} \\ Ex.15 \text{ How many ml. of 0.1 M oxalic acid solution is required to reduce 0.01 mole KMnO_{4} to MnO_{2} ? \\ \\ \begin{bmatrix} 1 \end{bmatrix} 250 \qquad \begin{bmatrix} 2 \end{bmatrix} 150 \qquad \begin{bmatrix} 1 \end{bmatrix} 100 \qquad \begin{bmatrix} 4 \end{bmatrix} 500 \\ \end{bmatrix} \\ \end{bmatrix} \\ \text{Sol. 3e + 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{*4} + 4H_{2}O \\ \end{bmatrix} \\ Equivalent weight = \frac{M}{3} \qquad 0.01 \text{ mole KMnO}_{4} = 0.03 \text{ equivalent KMnO}_{4} \\ We have: normality = (equivalent) \times \frac{1000}{V} \\ O.2 \times 0.03 \times \frac{1000}{V} \qquad V = 150 \text{ ml.} \\ \end{bmatrix} \\ Ex.16 \text{ When one mole NO_{5}^{-} is converted into 1 mole NO_{2}, 0.5 mole. N_{2} and 0.5 mole N_{2}O respectively. It accepts x, y and z mole of electrons -x, y and z are respectively. \\ \\ 11 \end{bmatrix} 1, 5, 4 \qquad \begin{bmatrix} 2 \end{bmatrix} 1, 2, 3 \qquad \begin{bmatrix} 3 \end{bmatrix} 2, 1, 3 \qquad \begin{bmatrix} 4 \end{bmatrix} 2, 3, 4 \\ \end{bmatrix} \\ \end{bmatrix} \\ \text{Sol. The equation are :} \\ NO_{5}^{-} + 6H^{+} + 5e \rightarrow 0.5N_{2} + H_{2}O \\ NO_{5}^{-} + 6H^{+} + 5e \rightarrow 0.5N_{2} + 3H_{2}O \\ NO_{5}^{-} + 6H^{+} + 5e \rightarrow 0.5N_{2} + 3H_{2}O \\ NO_{5}^{-} + 6H^{+} + 5e \rightarrow 0.5N_{2} + 2.5H_{2}O \\ NO_{5}^{-} + 5H^{+} + 4e \rightarrow 0.5N_{2}O + 2.5H_{2}O \\ \therefore x, y and z respectively are 1, 5 \text{ and 4}. \\ \end{cases}$$

Ex.17 Calculate the equivalent weight of potassium permanganate (KMnO₄) in (i) neutral medium (ii) acidic medium (iii) alkaline medium, by oxidation number method.

 $\label{eq:sol} \textbf{Sol.} \quad (i) \ Mn^{{}_{+7}} + 3e \rightarrow Mn^{{}_{+4}} \, ; \ Eq. \ wt. = M/3$

- (ii) Mn^{+7} + 5e $\rightarrow Mn^{+2}$; Eq. wt. = M/5
- (iii) Mn^{+7} + 1e $\rightarrow Mn^{+6}$; Eq. wt. = M/1

- **Ex.18** An element A in a compound ABD has an oxidation no. A⁻ⁿ. It is oxidised by $Cr_2O_7^{-2}$ in acid medium. In an experiment 1.68 × 10⁻³ mole of K₂Cr₂O₇ was required for 3.26 × 10⁻³ mole of the compound ABD. Calculate new oxidation state of A.
- **Sol.** $A^{-n} \longrightarrow A^{+a} + (a + n)e$

 $6e + Cr_2^{+6} \longrightarrow 2Cr^{+3}$

- :. Meq. of $A^{-n} =$ Meq. of $Cr_2O_7^{-2}$ or $3.26 \times 10^{-3} \times (a + n) = 1.68 \times 10^{-3} \times 6$
- \therefore a + n = 3 or a = 3 n

Ex.19 Find out the value of n in MnO_4^- + 8H⁺ + ne \rightarrow Mn⁺² + 4H₂O

Sol. \therefore Total charge on L.H.S. = Total charge on R.H.S.

-1 + 8 - (-n) = +2; $\therefore n = 5$

- **Ex.20** In the reaction 8 Al + 3 $Fe_3O_4 \rightarrow 4 Al_2O_3 + 9 Fe$
 - (a) Which element is oxidised or reduced ?
 - (b) Total number of electrons transferred during the change.

Sol. 8 Al⁰
$$\rightarrow$$
 4Al₂³⁺ +24e

24e + $3Fe_{3}^{(8/3)+} \rightarrow 9Fe^{0}$

or $8AI^{0} + 3 Fe_{3}^{(8/3)+} \rightarrow 4 AI_{2}^{3+} + 9Fe$

Reductant is Al i.e. Al is oxidised

Oxidant is $Fe_{3}O_{4}$ or $Fe^{(8/3)+}$ i.e. **Fe**^{(8/3)+} is reduced

Number of electrons used during redox change = 24

Ex.21 A student unsuccessfully tried to balance the following equation :

 $Cr_2O_7^{2-}$ + Fe³⁺ + H⁺ \rightarrow Cr³⁺ + Fe²⁺ + H₂O . Why could not student balance the equation?

Sol. Both parts are reduction part i.e. Cr⁺⁶ as well as Fe³⁺ both are reduced without a reductant which is not possible.

Ex.22 Six moles of Cl₂ undergo a loss and gain of 10 moles of electrons to form two oxidation state of Cl.

Write down the two half reactions & find out the oxidation number of each Cl atom involved.

Sol.
$$6Cl_2 \rightarrow 2 Cl^{5+} + 10 Cl^{-}$$

+ 5; -1;

Ex.23 Reaction between 1 mole of HgCl_2 and 1 mole of SnCl_2 occurs as follows. 2 $\text{HgCl}_2 + \text{SnCl}_2 \rightarrow \text{SnCl}_4 + \text{Hg}_2\text{Cl}_2$. Which of the following ions will be there after completion of the reaction?

 $[1] Hg^{+1}, Sn^{+2}, Sn^{+4} \qquad [2] Hg^{+2}, Sn^{+2} \qquad [3] Sn^{+2}, Sn^{+4} \qquad [4] Hg^{+2}, Sn^{+2}, Sn^{+4}$

Sol. According to the reaction, 2 mole HgCl₂ reacts with 1 mole SnCl₂. Therefore, 1 mole HgCl₂ will react with 1/2 mole SnCl₂ & 1/2 mole SnCl₂ will be left. Thus, Sn⁺⁴, Hg⁺¹ and Sn⁺² ions will remain in the solution.

EXERCISE - 1

OXID	DATION REDUCTION DEFINITION					
1.	Reduction is defined as :					
	[1] Increase in positive valency	[2] Gain of electrons				
	[3] Loss of protons	[4] Decrease in negativ	ve valency			
2.	$\text{Co}(s)$ + $\text{Cu}^{2+}(aq) \rightarrow \text{Co}^{2+}(aq)$ + $\text{Cu}(s)$. The above	e reaction is :				
	[1] Oxidation reaction [2] Reduction reaction	[3] Redox reaction	[4] None of these			
3.	Which of the following reactions depict the oxic	dising behavior of H ₂ SO ₄	:			
	$\textbf{[1] 2PCI}_{5} + \textbf{H}_{2}\textbf{SO}_{4} \rightarrow \textbf{2POCI}_{3} + \textbf{2HCI} + \textbf{SO}_{2}\textbf{CI}_{2}$	[2] 2NaOH + $H_2SO_4 \rightarrow$	$Na_2SO_4 + 2H_2O$			
	$[3] \text{ NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{NaHSO}_4 + \text{HCl}$	$[4] 2HI + H_2SO_4 \rightarrow I_2 +$	$SO_2 + 2H_2O$			
4.	In C + $H_2O \rightarrow CO + H_2$, H_2O acts as :					
	[1] Oxidising agent [2] Reducing agent	[3] Both	[4] None			
5.	Reducing agent is that :					
	[1] Which takes electrons	[2] Which takes proton	s			
	[3] Which donates electrons	[4] Which donates prot	ons			
6.	HBr and HI reduce sulphuric acid. HCl can redu	uce KMnO $_4$ and HF can r	educe :			
	[1] H ₂ SO ₄ [2] KMnO ₄	[3] K ₂ Cr ₂ O ₇	[4] None of these			
7.	The compound which gives oxygen on modera	te heating is :				
	[1] Ferric oxide [2] Zinc oxide	[3] Mercuric oxide [4] Aluminium oxide				
8.	In a reaction between zinc and iodine in which	zinc iodide is formed, wh	at is being oxidised :			
	[1] Zinc ions [2] Iodide ions	[3] Zinc atom	[4] Iodine			
9.	In the following reactions : $4P + 3KOH + 3H_2O$	\rightarrow 3KH ₂ PO ₂ + PH ₃				
	[1] Only phosphorus is oxidized	[2] Only phosphorus is	reduced			
	[3] Phosphorus is both oxidized and reduced	[4] Phosphorus is neith	er oxidized nor reduced			
10.	The reaction of $\operatorname{Zn}^{++} + 2e^- \to \operatorname{Zn}$ is an example					
	[1] Oxidatio [2] Reduction	[3] Redox reaction	[4] None			
11.	In the reaction $3Cl_2 + 6OH^- \rightarrow 5Cl^- + ClO_3^- + 3Cl_3^-$	BH ₂ O chlorine is :				
	[1] Oxidised	[2] Reduced				
	[3] Oxidised as well as reduced	[4] Neither oxidised no	r reduced			
12.	In the reaction $3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- +$	+ BrO ₃ ⁻ + 6HCO ₃ ⁻				
	 [1] Bromine is oxidised and carbonate is reduce oxidised 	ed	[2] Bromine is both reduced and			
	[3] Bromine is neither reduced nor oxidised	[4] Bromine is reduced	and water is oxidised			
13.	A gas X bleaches a flower by reduction and and					
	[1] NH ₂ & SO ₂ [2] NO ₂ & N ₂ O ₅	[3] SO ₂ & Cl ₂	[4] SO ₂ & PCl ₃			
14.	What will happen when copper rod is dipped in	2 2	2 0			
	properties are as follows : Al < Zn > Cu > Ag					
	[1] Aluminium will get deposited on the rod	[2] Colour of the solution	on will becomes blue			
	[3] Copper aluminium alloy will be formed	[4] No reaction will occ				
15.	For the reaction : $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ where $4Fe^{3+} + 6O^{2-}$					
	[1] It is an example of redox reaction	[2] Metallic iron reduce				
	[3] Fe is oxidised	[4] Metallic iron is a rec	ducing agent			

16.	In the reaction								
	$MnO_4^- + NO_2^- \rightarrow NO_3^- + Mn^{2+}$								
	one mole of MnO_4^- ox	didises moles d	of NO_2^-						
	[1] 5	[2] 5/2	[3] 3	[4] 3/2					
17.	In the following equati	on CIO_{3}^{-} + 6 H ⁺ + X \rightarrow C	I^2 + 3H ₂ O, then X is						
	[1] O	[2] 6e⁻	[3] O ₂	[4] 5e⁻					
18.	Which one of the follo	wing compounds can act	t as an oxidising as well a	as reducing agent -					
	[1] KMnO ₄	[2] H ₂ O ₂	[3] BaO	[4] K ₂ Cr ₂ O ₇					
19.	When acidic solution of the ion which is oxidis		phate is treated with pote	assium permanganate solution then					
	[1] MnO ₄ ⁻	[2] NH ₄ +	[3] Fe ²⁺	[4] SO ₄ ²⁻					
20.	The violent reaction b	etween sodium and wate	r is an example of -						
	[1] Reduction	[2] Oxidation	[3] Redox reaction	[4] Neutralization					
21.	In the formation of Pb	$(NO_3)_2$ form PbO_2 -							
	[1] PbO_2 is oxidised		[2] PbO ₂ is reduced						
	[3] PbO ₂ is both oxidis	ed and reduced.	[4] PbO_2 is neither oxid	dised nor reduced					
22.	Which of the following	s an example of reducti	on -						
	$[1] CuO \rightarrow Cu_{2}O$		$[2] [Fe(CN)_6]^{4-} \to $	CN) ₆] ³⁻					
	$[3] \text{ KI} \rightarrow \text{I}_2$		$[4] H_2 S \rightarrow S$						
23.	Reaction $[Ag(NH_3)_2]^+$	$+ 2H^+ \rightarrow Ag^+ + 2NH_4^+$ is a	n example of -						
	[1] Oxidation		[2] Reduction						
	[3] Neither oxidation n	or reduction	[4] Oxidation and redu	ction both					
24.	Which of the following	reactions involves neith	ner oxidation nor reduction -						
	$[1] \operatorname{CrO}_{4}^{2-} \to \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$	$[2] \operatorname{Cr} \rightarrow \operatorname{CrCl}_3$	$[3] \text{ VO}^{2+} \rightarrow \text{V}_2\text{O}_2$	$[4] 2S_2O_3^{2-} \to S_4O_6^{2-}$					
25.	What would happen w	hen a small quantity of H	H_2O_2 is added to a solution	on of FeSO ₄ -					
	[1] Colour disappears		[2] H ₂ is evolved						
	[3] An electron is adde	ed to Fe ⁺⁺	[4] An electron is lost b	by Fe ⁺⁺					
26.	The reaction $2\text{TiCl}_{3} \rightarrow$	$\text{TiCl}_{2} + \text{TiCl}_{4}$ example of	· _						
	[1] dissociation	[2] disproportionation	[3] reversible reaction	[4] exothermic reaction					
27.	The anodic reaction in	the electrolysis of the a	queous solution of NaCl	is -					
	[1] Oxidation of chlorid		[2] Evolution of oxyger						
	[3] reduction of chloric	le ion	[4] Oxidation of sodium	n ion.					
28.	In the reaction -								
	$2\text{FeCl}_3 + \text{H}_2\text{S} \rightarrow 2\text{FeC}$	L							
	[1] $FeCl_3$ is used as an		[2] FeCl ₃ and H_2 S both						
	[3] FeCl ₃ is oxidised a	nd H_2 S is reduced.	[4] H_2 S is used as an c	oxidant.					

RULES OF OXIDATION NUMBER AND OXIDATION NUMBER

- **29.** A compound contains atoms X, Y and Z the oxidation number of X is + 2, Y is + 5 and Z is 2 therefore a possible formula of the compound is :
 - [1] XYZ_2 [2] $X_2(YZ_3)_2$ [3] $X_3(YZ_4)_2$ [4] $X_3(Y_4Z)_2$

30.	The atomic number o	f an element which show	s the oxidation state of +	- 3 is :				
	[1] 13	[2] 32	[3] 33	[4] 17				
31.	Which of the following is the correct oxidation number of phosphorus in $Mg_2P_2O_7$:							
	[1] – 3	[2] + 2	[3] + 5	[4] + 3				
32.	Oxidation number of	sulphur in Na₂SO₄ is :						
	[1] – 2	[2] + 6	[3] + 2	[4] – 6				
33.	Oxidation state of O_2	in H ₂ O ₂ is :						
	[1] – 2	[2] – 1	[3] + 1	[4] + 2				
34.		lost by a metal ion M ³⁺ , it						
	[1] 0	[2] + 6	[3] + 2	[4] + 4				
35.	Oxidation number of							
	[1] + 2	[2] + 3	[3] + 1	[4] + 4				
36.	Oxidation number of							
	[1] + 1	[2] 0	[3] – 1	[4] + 6				
37.	Oxidation number of							
	[1] – 2	[2] + 1	[3] + 6	[4] 0				
38.	Oxidation number of							
	[1] – 3	[2] + 3	[3] 0	[4] + 5				
39.		r of nitrogen in NH ₂ OH is						
	[1] + 1	[2] – 1	[3] – 3	[4] – 2				
40.	Oxidation number of							
	[1] +1	[2] 6	[3] 4	[4] 7				
41.		$1nO_4$ and $K_2Cr_2O_7$, the hig						
	[1] Potassium	[2] Manganese	[3] Chromium	[4] Oxygen				
42.				ns in its outermost shell will be				
	[1] 4	[2] 2	[3] 6	[4] 8				
43.	Oxidation number of							
	[1] 0	[2] 4	[3] 8	[4] 2				
44.		r of nitrogen in NH ₄ NO ₃ is						
	[1] + 3	[2] + 5	[3] – 3 and + 5	[4] + 3 and + 5				
45.		g halogens always shows	only one oxidation state					
	[1] CI	[2] F	[3] Br	[4] I				
46.	In which of the follow	ing compound oxidation r	number of Cl is + 3?					
	[1] ICI	[2] CIO ₃	[3] CIF ₃	[4] HCIO ₄				
47.	The oxidation numbe	r of cobalt in [Co(CN) ₆] ³⁻ i	s -	•				
	[1] + 3	[2] - 3	[3] + 6	[4] - 6				
48.	In which of the follow	ing compound oxidation r	number of iron is not +3					
	[1] Fe ₃ O ₄	[2] Fe ₂ O ₃	[3] FeCl ₃	[4] FePO₄				
49.	The oxidation numbe	2 0	5	4				
	[1] + 3	[2] + 8/3	[3] + 1	[4] +2				
50.		number of phosphorus ir						
	[1] + 2	[2] + 3	[3] - 3	[4] + 5				

51.	Oxidation number of s	ulphur in H ₂ SO ₂ is -						
	[1] + 2	[2] + 4	[3] + 8	[4] + 6				
52.	In which of the following compound, iodine is in its highest oxidation state -							
	[1] KI	[2] KIO ₄	[3] KI ₃	[4] IF ₅				
53.	Oxidation number of c	hlorine in Hypochlorous	acid is-					
	[1] –1	[2] zero	[3] + 1	[4] + 2				
54.	The compound in whic	ch oxidation state of meta	al is zero -					
	[1] Fe ₂ (CO) ₉	[2] Ni(CO) ₄	[3] Fe ₃ (CO) ₉	[4] All of the above				
55.	The oxidation state of	phosphorus is + 3 in -						
	[1] Orthophosphorous	acid	[2] Orthophosphoric ad	cid				
	[3] Pyrophosphoric aci	d	[4] Metaphosphoric ac	id				
56.	Which of the following	is a true statement -						
	[1] Oxidation state of c	oxygen in HOF is zero.	[2] Oxidation state of f	luorine in HOF is – 1.				
	[3] Oxidation state of c	chlorine in HOCl is + 1.	[4] All of the above.					
57.	The following reaction	is used in the extraction	of chromium from its or	e				
	2Fe ₂ O ₃ .Cr ₂ O ₃ + 4Na ₂ C	$O_3 + 3O_2 \rightarrow 2Fe_2O_3 + 4N$	$Na_2CrO_4 + 4CO_2$					
	What is true about the	oxidation states of the s	ubstance in the reaction	-				
	[1] Chromium is oxidis	ed from + 3 to + 6 oxida	tion state.					
	[2] Iron is reduced from	n + 3 to + 2 oxidation sta	ate.					
	[3] Carbon is oxidised	from + 3 to + 4 oxidatior	n state					
	[4] There is no change	in the oxidation states o	of the substances.					
58.	Oxidation state of nitro	ogen is incorrectly given	for -					
	Compounds	Oxidation states	Compounds	Oxidation states				
	[1] [Co(NH ₃) ₅ Cl]Cl ₂	- 3	[2] NH ₂ OH	– 1				
	[3] (N ₂ H ₅) ₂ SO ₄	+2	[4] Mg ₃ N ₂	- 3				
59.	Out of the following ac	ids which has different o	xidation state of phosph	orus as compared to others -				
	[1] Phosphorous acid phosphoric acid	[2] Orthophosphoric ac	bid	[3] Metaphosphoric acid [4] Pyro-				
60.	The brown ring comple	ex compound is formulat	ed as [Fe(H ₂ O) ₅ NO ⁺]SO	. The oxidation state of iron is -				
	[1] 1	[2] 2	[3] 3	[4] zero				
61.	When KMnO ₄ is reduc	ed with oxalic acid in aci	dic solution, the oxidatio	n number of Mn changes from -				
	[1] 7 to 4	[2] 6 to 4	[3] 7 to 2	[4] 4 to 2				
62.	The oxidation number	of each sulphur in Na ₂ S	₄ O ₆ is -					
	[1] 2.5	ive + 2 and one S has +	[2] 2 and 3 (two S hav	e + 2 and the other two have + 3) [4] 5 and 0 (two S have + 5 and				
63.	In a triatomic molecul molecul molecular formula of the second second second second second second second second		f atoms A, B and C are	+ 6, + 1 and - 2 respectively. The				
	[1] B ₂ AC ₄	$[2] B_2 A_2 C_7$	[3] Both of the above.	[4] None of the above				
64.	-	statements is not correct						
		ons are used in the reduc						
			ed in the reduction of dic	hromate by Fe (II)				
	[3] The oxidation state	of oxygen is $-\frac{1}{2}$ in pote	assium superoxide.					
		۷.						

	[4] The oxidation number increases in the process of reduction.												
65.	In acidic medium, reaction : $MnO_4^- \longrightarrow Mn^{2+}$ is an example of : [1] Oxidation by three electrons [2] Reduction by three electrons												
			-						-				
66		Dxidation	-			ra ia na ah			on by five	electr	ons		
66.				-		re is no ch	-		-	1013	C .		
		5		4	тно		$[2] SO_2 + 2H_2S \rightarrow 2H_2O + 3S$ $[4] 2BaO + O_2 \rightarrow 2BaO_2$						
67.		-				$SO_4 + H_2SC$			$O_2 \rightarrow ZDC$	a0 ₂			
07.		/alency (/alencv	of bariun	n is not	change	4	
		-			nes zero			-	of bariun		-		
68.		-				lanced wh		-					
					0, ⁻² + 0⊦								
		4	5	2	4	4H ₂ O + 80)H-						
	[2] 2	²CrO₄-2 +	- 8H,0 -	\rightarrow CrO ₂ ⁻	+ 4H ₂ O ·	+ 8OH⁻							
	[3] ($CrO_{4}^{-2} +$	$H_2O \rightarrow$	$CrO_2^- +$	$H_{2}O + O$	H-							
	[4] 3	BCrO ₄ ⁻² +	+ 4H ₂ O +	+ 6e → 2	$2CrO_{2}^{-}+$	8OH⁻							
69.	Cho	ose the	set of th	e coeffi	cient that	correctly	baland	ce the e	quation				
	xCr ₂	₂ O ₇ ⁻² + yl	H⁺ + ze ·	$\rightarrow aCr^{+3}$	+ bH ₂ O								
		x	у	z	а	b		x	У	z	а	b	
	[1]					7	[2]	1	14	6	2	7	
	[3]	2	7	6	2	7	[4]	2	7	6	1	7	
70.		+ 3Fe ₃ O											
			on how	-		ons will be							
	[1] 1			[2]			[3] 2 				14		
71.			protons v			he right to		-	orocess		$_{4}^{-} \rightarrow Mn^{+1}$	2	
70	[1] C		and b)	[2]	8		[3] 5)		[4]	2		
72.		ctions (a		a +2 · O			(6)				. 01-		
		⁻ e ⁺³ + H ₂		-	o or booir	- modium	(b) (5r(OH) ₂	$+ I_2 \rightarrow C$	r(OH) ₃	+ 21		
						c medium	[3] =	hasic	h (hasir	-) [/]	a (hasic)), b (acidic)	
73.		ne reaction					[၁] င	a (basic)	, b (basit	<i>)</i> [+]	a (basic		
70.		e x will b	-	1 XC //	1								
		n ₁ + n ₂		[2] r	n. – n.		[3] r	$n_1 - n_2$		[4]	n₁n₂		
74.		5 + H ₂ O ₂			2 1		[-]	1 2			1 2		
				· -	•	e balanced	state	of the e	equation	are			
	[1] 1			[2] 1			[3] 2				2, 4		

EQUIVALENT MASS

75. In acidic medium equivalent weight of $K_2Cr_2O_7$ (molecular weight = M) is :[1] M / 3[2] M / 4[3] M / 6[4] M / 2

76. In the following reaction

 $As_{2}S_{5} + NO_{3}^{-} \rightarrow AsO_{4}^{3-} + SO_{4}^{2-} + NO_{2}$ The equivalent weight of $As_{2}S_{5}$ is [1] M/8 [2] M/6 [3] M/40 [4] M/30 In a reaction the equivalent weight of KMnO, becomes one third of its molecular weight. The exidetion

77. In a reaction the equivalent weight of $KMnO_4$ becomes one third of its molecular weight. The oxidation state of Mn in the final product is

78. The equivalent weight of reducing agent in the reaction

$$2[Fe(CN)_6]^{3-} + 2OH^- + H_2O_2 \rightarrow 2[Fe(CN)_6]^{4-} + 2H_2O + O -$$
[1] 17 [2] 212 [3] 16 [4] 6/8

79. In a redox reaction $K_2Cr_2O_7$ changes to $Cr_2(SO_4)_3$. If the molecular weight of $K_2Cr_2O_7$ is M and equivalent weight E then -

[1]
$$M = 3E$$
 [2] $M = 6E$ [3] $E = 2M$ [4] $E = 6M$

80. Fe_3O_4 is oxidised to Fe_2O_3 . If the molecular weight of Fe_3O_4 is M and equivalent weight E then -

[1] E = M [2] E =
$$\frac{M}{3}$$
 [3] E = $\frac{2}{3}$ M [4] E = $\frac{3}{2}$ M

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	4	1	3	4	3	2	3	2	3	2	3	4	2	2	2	2	3	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	1	3	1	4	2	1	1	3	1	3	2	2	2	2	1	2	1	2	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	3	1	3	2	3	1	1	4	4	4	2	3	4	1	4	1	3	1	1
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	3	4	3	4	4	3	2	1	2	2	1	1	3	2	3	3	2	1	2	1

Answer Key

EXERCISE - 2

1.	Oxidation state of C	r in Cr(CO) ₆ is -			[AIIMS-93]
	[1] 0	[2] + 2	[3] - 2	[4] + 6	
2.	Oxidation number of	f Pt in $[Pt(C_2H_4)Cl_3]^-$ is -			[MLNR-93]
	[1] + 1	[2] + 2	[3] + 3	[4] + 4	
3.	The brown ring com	plex is formulated as [F	e(H ₂ O) ₅ NO]SO ₄ . The ox	vidation state of iror	n is -
	[1] + 1	[2] + 2	[3] + 3	[4] 0	[MPPMT-93]
4.	The oxidation numb	er of sulphur in S_8 , S_2F	$_{2}$, $H_{2}S$ respectively, are	-	[IIT–1999]
	[1] 0, + 1 and - 2	[2] + 2, +1 and - 2	[3] 0, + 1 and + 2	[4] - 2, + 1 and	- 2
5.	Which of the followi	ng is not a reducing ag	ent -		[DCE-2000]
	[1] SO ₂	[2] H ₂ O ₂	[3] CO ₂	[4] NO ₂	
6.	Equivalent mass of	oxidising agent in the r	eaction,		[DCE-2000]
	$SO_2 + 2H_2S \rightarrow 3S$ ·	+ 2H ₂ O is -			
	[1] 32	[2] 64	[3] 16	[4] 8	
7.		ee element forming a pa could be the compound	art of compound in oxida -	ation states of + 2,	+ 5 and - 2 [CPMT–
	[1] A ₂ (BC) ₂	[2] A ₂ (BC ₄) ₃	[3] A ₃ (BC ₄) ₂	[4] ABC	
8.	On reduction of KMi the magnitude of th		idic medium, the oxidati	on number of Mn c	hanges. What is [MPPMT-2000]
	[1] From 7 to 2	[2] From 6 to 2	[3] From 5 to 2	[4] From 7 to 4	
9.	The oxidation numb	er of iron in Fe ₃ O ₄ is -			[CEET-2000]
	[1] + 2	[2] + 3	[3] 8/3	[4] 2/3	
10.	What is oxidation n	umber of Fe in Fe(CO),			[CPMT-2000]
	[1] Zero	[2] 5	[3] – 5	[4] + 3	
11.		on state of oxygen is -	[0] 0	[1] . 0	[CPMT-2000]
	[1] – 2	[2] — 1	[3] 0	[4] 4	
12.	In the balanced equ	ation -			[CPMT-2000]
	$5H_2O_2 + XCIO_2 + 20$	$OH^- \rightarrow XCI^- + YO_2 + 6H$	H ₂ O		
	The reaction is bala	nced if			
	[1] X = 5, Y = 2	[2] X = 2, Y = 5	[3] X = 4, Y = 10	[4] X = 5, Y = 5	;
13.	Best way to prevent	rusting of iron is by -			[DPMT-2000]
	[1] making iron cath	ode		[2] putting it in s	saline water
	[3] both of these		[4] none of these		
14.		na identify the species	with an atom in $+ 6$ oxi	idation state	[IIT–2000]
	-				[111-2000]
	[1] MnO ₄ -	[2] Cr(CN) ₆ ³⁻	[3] NiF ₆ ²⁻	[4] CrO ₂ Cl ₂	

15.	HNO_3 acts as -			[MANIPAL-2001]					
	[1] acid	[2] oxidising agent	[3] reducing agent	[4] Both (a) and (b)					
16.	The reaction,			[IIT–2001]					
	$3ClO^{-}(aq) \rightarrow ClO_{3}^{-}$	-(aq) + 2CI (aq)							
	is an example of-								
	[1] Oxidation react	ion	[2] Reduction reaction	n					
	[3] Disproportionat	on reaction	[4] Decomposition rea	action.					
17.	In the standardizat	ion of Na ₂ S ₂ O ₃ using K ₂ Cr	$_{2}O_{7}$ by using iodometry,	the equivalent weight of $K_2 Cr_2 O_7$ is					
	[1] (molecular weig	ght) / 2	[2] (molecular weight) / 6 [IIT-2001]					
	[3] (molecular weig	ght) / 3	[4] same as molecula	ar weight.					
18.	The oxidation num	ber of sulphur in $Na_2S_4O_6$, is -	[RPMT-2002]					
	[1] 1.5	[2] 2.5	[3] 3	[4] 2					
19.	Which of the follo	wing is a redox reaction -		[AIEEE-2002]					
	[1] NaCl + KNO ₃ -	\rightarrow NaNO ₃ + KCI	[2] CaC ₂ O ₄ + 2HCl –	\rightarrow CaCl ₂ + H ₂ C ₂ O ₄					
	[3] Mg(OH) ₂ + 2NI	$H_4CI \rightarrow MgCl_2 + NH_4OH$	[4] Zn + 2AgCN \rightarrow 2Ag + Zn(CN) ₂						
20.	When KMnO ₄ acts number of electror 2002]	as an oxidising agent an ns transferred in each cas	d ultimately forms MnO ₄ e respectively is -	²⁻ , MnO ₂ , Mn ₂ O ₃ and Mn ²⁺ then the [AIEEE-					
	[1] 4, 3, 1, 5	[2] 1, 5, 3, 7	[3] 1, 3, 4, 5	[4] 3, 5, 7, 1					
21.	The oxidation state	e of Fe in $K_4[Fe(CN)_6]$ is		[CET-2002]					
	[1] + 2	[2] + 6	[3] + 3	[4] + 4					
22.	Oxidation number	of S in $H_2S_2O_8$ is -		[CET-2002]					
	[1] + 2	[2] + 4	[3] + 6	[4] + 7					
23.	Which reaction is	not feasible -		[CPMT-2002]					
	$[1] 2KI + Br_2 \rightarrow 2k$	(Br + I ₂	[2] 2KBr + $I_2 \rightarrow 2KI + Br_2$						
	[3] 2KBr + $\text{Cl}_2 \rightarrow$	2KCI + Br ₂	$[4] 2H_2O + 2F_2 \rightarrow 4HF + O_2$						
24.	The oxidation state	e of Cr in $[Cr(NH_3)_4Cl_2]^+$ is	:	[AIEEE– 2005]					
	[1] 0	[2] +1	[3] +2	[4] +3					
25.	The oxidation state dichromate solutio 2005]		duct formed by the reactio	n between KI and acidified potassium [AIEEE-					
	[1] +3	[2] +2	[3] +6	[4] +4					
			wer Key						
Qus. Ans.	1 2 3 4 1 2 1 1	5 6 7 8 9 3 3 2 1 3	10 11 12 13 ⁻	14 15 16 17 18 19 20 4 4 3 2 2 4 3					
Qus.	1 2 1 1 21 22 23 24 1 2 2 4	25							

Ans.