CHEM STRY MARKING SCHEME OUTSI DE DELHI -2013 SET - 56/2

	Examples: polythene, polypropylene, polystyrene, polyvinyl chloride, teflon, polyvinyl acetate,	
	cooling	
11	Ther mopl astics. These polymers are easily softened on heating moulded and then hardened on	1/2+1/2
	$R-X + R'-O$ Na \longrightarrow $R-O-R' + Na X$	1+1
	(b) Williams on synt hesis	
	CHCl ₃ + aq NaOH NaOH NaOH NaOH Salicylaldehyde	
	OH OH OH	
10	(a) Rei mer-Ti e mann reaction	
	(ii) PQ	1+1
9.	(i) Due to creation of F-center / Ani oni c vacancies filled by free electrons	
	(any one)	
8.	Dacron/ Gyptal/ Nylon-66/ Bakelite/ Melamine for mal dehyde resin/ Urea for mal dehyde resin	1
7.	Pepti de li nkage	1
6.	El ectrol ytic Refining	
5	2- Bromo-4-chl or opent ane.	1
4	Due to H- bonding	1
3	Che mi sor pti on	1
2	CO_2F_2 / Freon	1
	NH_2	
1	CH₃ NIII	1

	et c. (any one)	
	Ther mosetting polymers These polymers on heating become infusible and for man insoluble	1/2+1/2
	hard mass thus, cannot be remoulded.	
	Examples: Bakelite, urea-for mal del yde resins, etc.	
	OR	
11	The polymers which can be degraded by the micro organism	1
	Example: PHBV (or any other correct one example)	1
12		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$H - C - C^{+} \longrightarrow H \longrightarrow H \longrightarrow H$ $H - H \longrightarrow H$ $Ethene$ $H - H \longrightarrow H$ $H \longrightarrow H$ $H \longrightarrow H$	1
13	The interhalogen compounds can be prepared by the direct combination or by the action of	1
	hal ogen on lower interhal ogen compounds.	
	General composition $XX \square n$ (where $n=1,3,5,7$ & $X \square$ is more electronegative)	1
		<u> </u>

14	(i)	
	F Xe F	1+1
	(ii)	1 +1
	O O O O O O O O O O O O	
15	For f.c. c unit cell $r = \underline{a}$	1/2
	$2\sqrt{2}$	
	$a = 2 r \times \sqrt{2}$	1
	= 2 x 125 pm x 1.414	
	=353.5 pm	1/2
16	$\triangle G^{\circ} = -n \text{ FE}^{\circ} \text{ cell}$ = -2 x 96500 C mol ⁻¹ x 1.1 V	1/ ₂ 1/ ₂
	$= -212300 \text{ J} \text{ mol}^{-1} \text{ or } -212.3 \text{ kJ} \text{ mol}^{-1}$	1
17	(a) or der = $2 + \frac{1}{2} = \frac{5}{2}$	1/2
	(b) $t_{1/2} = \frac{0.693}{k}$ = $\frac{0.693 \text{ s}}{5.5 \times 10^{-14}}$	1/2
	5.5×10^{-14}	1
	$=1.26 \times 10^{13} \text{ s}$	1
18	(i) Zone refining: the impurities are more soluble in the melt than in the solid state of the metal.	
	(ii) Vapour phase refining: In this method, the metal is converted into its volatile compound	

	and is then decomposed to give pure metal.	1+1
19	(i) Associated Colloids: There are some substances which at low concentrations behave as	
	nor mal strong electrolytes, but at higher concentrations exhibit colloidal behaviour due to the	
	for mation of aggregates. The aggregated particles thus for med are called micelles. These are also	
	known as associated colloi ds .	1/2+1/2
	Example: Soap solution	
	(ii) Lyophilic Sol: In which there is affinity between disperse phase & disperssion medium (or	
	sol vent loving)	1/2+1/2
	Example: Starch sol, Gum sol, Gelatin sol (any one)	
	(iii) Adsorption: The accumulation of molecular species at the surface rather than in the bulk of a	
	solid or liquidister med adsorption.	
	Example: Adsorption of poisonous gases on charcoal	1/2+1/2
20	Gi ven cell notation is incorrect	
	Correct cell for mula is	
	$Cu^{2+} (10^{-1} \text{ M} Cu_{(s)} Ag^{+} (10^{-3} \text{ M} Ag_{(s)})$	
	G ven E° cell = 0.46 V	
	$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{[Gu^{2+}]}{[Ag^{+}]^{2}}$	1
	$E_{\rm cell} = 0.46 - \frac{0.0591}{2} \log \frac{[0.1]}{[10^{-3}]^2}$	1
	$E_{\text{cell}} = 0.46 - 0.02955 \log \frac{\text{[0.1]}}{\text{[10}^{-6]}}$	
	$E_{\text{cell}} = 0.46 - 0.02955 \log 10^5$	
	$E_{\text{cell}} = 0.46 - 0.02955 \text{ x } 5$	

	$E_{\text{cell}} = 0.46 - 0.146$	1
	$E_{\text{cell}} = 0.314V$	
	ar	
	$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.059}{2} \log \left[\frac{\text{Ag}^+}{2} \right]^2$	1
	$=0.46 \mathrm{V} - \frac{0.059}{2} \log \left[\frac{10^{3}}{0.1} \right]^{2}$	
	$= 0.46 \mathrm{V} - \frac{0.059}{2} \log \left[\frac{10^{3}}{0.1} \right]^{2}$	1
	$= 0.46 \mathrm{V} + 0.0295 \mathrm{x}5$	
	=0.6075 V	1
21	(i) Mrs. Anuradha has shown generosity/caring/helping/kindness attitude towards poor	
	(ii) Vt. B ₁₂ .	
	(iii) Vitamin B/C	1x3=3
22	(i) $C_6 H_5 N_2 \Omega \xrightarrow{H_3 PO_2 + H_2 O} C_6 H_5 + H_5 PO_5 + HO + N_2$.	
	(ii) $\xrightarrow{NH_2} \xrightarrow{Br_2(aq)} \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Br}$	
	(iii) $CH_3-C-NH_2 \xrightarrow{Br_2 + NaOH} CH_3NH_2 + Na_2CO_3 + NaBr + H_2O$	1x3=3
23	Gi ven if rate at 293 Kis R thus at 313 Krate becomes 4R	
	$\operatorname{Log} \underbrace{\frac{k_2}{k_1}}_{k_1} = \frac{E_a}{2 \cdot 303R} \left[\frac{T_2 - T_1}{T_4 \times T_2} \right]$	1

	$Log \frac{4R}{R} = \frac{E_{a}}{2 \cdot 303 \times 8 \cdot 314} \left[\frac{313 - 293}{293 \times 313} \right]$ $Log 4 = \frac{E_{a}}{19 \cdot 1471} \left[\frac{20}{91709} \right]$ $0.6021 = \frac{E_{a}}{19 \cdot 1471} \left[\frac{20}{91709} \right]$	1
	$\frac{0.6021 \times 19.1471 \times 91709}{20} = \text{Ea}$ $\text{Ea} = 52863.2177 \text{J or } 52.863 \text{ KJ}$	1
24	 (i) tetrachl ori doni ckel at e(II) i on (ii) sp³ (iii) Tetrahedral. 	
	OR	1x3=3
24	The energy involved in splitting the degenerate d-orbitals into two sets t_{2g} and e_g is called crystal field splitting energy. (i) $t_{2g}^4 e_g^0$ (ii) $t_{2g}^3 e_g^1$	1 1+1
25	(i) I, is better leaving group / C-I bond is weeker then C-Br bond.	
	(ii) Because it is a racenic mixture/equal & opposite rotation of two enantiomers cancel each other. (iii) Due to resonance in halobenzene / sp^2 hybridization of C - atom in halobenzene & sp^3 hybridization of C - atom in CH_s X	1x3=3
26	(i) Ant aci d / Anti hi st a mi ne (ii) Synt heti c det er gent s (iii) 0.2 % Phenol	1x3=3

27	(i) Being small in size p_{π} - p_{π} bonding/multiple bond is possible in oxygen & not in sulphur.	
	(ii) It decomposes to give nascent oxygen.	
	(iii) As H - Hoondis weakest.	1x3=3
28		
	(a)	
	(i) CH_3 – C – CH_3 $\xrightarrow{LiAlH_4 \text{ or}}$ CH_3CHCH_3	
	$(ii) CH_3-C-H+HCN \longrightarrow CH_3-C-OH \xrightarrow{H_2O/H^+} CH_3-C-OH \xrightarrow{COOH}$	
	(iii) $\stackrel{\text{CH}_3}{\longrightarrow} \stackrel{\text{COOH}}{\longrightarrow}$	1x3=3
	$(b) \ (i) \ Add \ I_2 \ \& \ Na \ OH \ in \ bot \ h \ the \ solutions \ pentan-2-one \ gives \ yellow \ colured \ precipitate, \ but$	
	pent an-3- one does not.	
	$(ii) \ \ \textit{Add} \ I_2 \ \& \ \textit{Na} \ \textit{OHin both the solutions et hanal gives yellowcolured precipitate, but propanal}$	1+1
	does not. (or any other correct suitable test)	
28	OR	
	(a)	
	(i) CH_3 – C – CH_3 $\xrightarrow{CH_3}$ CH_3 – CH_2 – CH_3 + H_2O	
	(ii) CH_3 – C – $Cl + H_2$ — Pd – $BaSO_4$ CH_3 – C – H + HCl	
	(iii) $\xrightarrow{Br_2 / FeBr_3}$ \xrightarrow{COOH} \xrightarrow{Br} + HBr	1x3=3

	(b) (i) F- CH ₂ - COOH	1+1
	(ii) CH ₃ COOH	
20	(A) Destining an account of all and decrease with the standard and the last terms of the standard and the st	1
29	(a) Partial vapour pressure of a liquid component is directly propertional to its mole fraction in its	1
	sol uti on.	
	The partial pressure of the volatile component or gas is directly proportional to its mole fraction in	
	solution. Only the proportionality constant K_H differs from $P^o{}_A$. Thus, Raoult's law becomes a	1
	special case of Henry's lawin which K _H becomes equal to P' _A .	
	(b) Given $W_B = 1.00g$; $W_A = 50g$; $W_K = 5.12 \text{K kg/ mol}^{-1}$; $\triangle T_f = 0.40 \text{K}$	
	$\Delta T_{\rm f} = K_{\rm A} \frac{W_{\rm B} X 1000}{M_{\rm B} X W_{\rm A} (\text{in grams})}$	1
	$M_{B} = K_{f} \frac{W_{B} X_{1000}}{\Delta T_{f} X W_{A}}$	
	$M_{\rm B} = M_{\rm f} \Delta T_{\rm f} X W_{\rm A}$	1
	$M_{B} = \frac{5.12 \times 1 \times 1000}{0.40 \times 50}$	
	$=256g \text{ mol}^{-1}$	1
	\mathbf{C}	
29	(a) (i) Ideal Solution: Those solutions which follows Raoult's law under all conditions of	
	temperature and pressure.	
	(ii) Azeotrope: Aliquid mixture which distills at constant temperature without undergoing any	
	change in composition is called Azeotrope.	
	(iii) Os motic Pressure: The minimum excess pressure that has to be applied on the solution side	
	to prevent the entry of the solvent into the solution through the semi - per meable membrane is	1x3=3
	called os notic pressure . (b) Given Molecular mass of Giucose = 180, % by wt = 10	
	(0) G 1011 1101 00 th 111100 01 G th 0000 - 100, 70 by 10 - 10	

	1000 x wt % w x 1000	1/2+1/2
	$m = \frac{(100 - wt \%) \times mol. wt. of solute}{m = \frac{M \times W}{M \times W}}$	
	1000 v 10	
	$m = \frac{1000 \times 10}{(100 - 10) \times 180}$	
	(100 10) 100	
	$m = \frac{10000}{}$	
	90 x 180	1
	$m = 0.617 \mathrm{m}$	1
30	(a) (i) Mh^{3+} (3d ⁴) good electron accept or as resulting species is more stable (3d ⁵)	
	(ii) The $E^o(M^+/M)$ values are not regular which can be explained from the irregular variation of	
	i oni sati on ent hal pi es ($\Delta i H_1 + \Delta i H_2$), subli mati on ent hal pi es and hydrati on ent hal pi es.	
	(iii) Due to multiple bond for mation ability of oxygen with Mn in Mn ₂ O ₁ .	1x3=3
	(b) (i) $2G^2 + 2H^4 \longrightarrow G^2 Q^2 + H_2 O$	
	(ii) $2KMh Q_4 \xrightarrow{\text{Heat}} K_2 Mh Q_4 + Mh Q_2 + Q_2$.	1+1
	OR	
		1x3=3
30	(a) Because of incomplete filling of d-orbitals	133-3

(b) There is a steady decrease in the si	ze of atoms/ions with increase in atomic number in
lant hanoi d	
Misch metal	
Sh. S.K.Munjal	Dr (Mrs.) Sangeeta
Bhatia	
Prof. R.D.Shukla	Mr. K.M. Abdul Raheem
Dr. K.N.Uppadhya	Mr.D. A Mishra
Mr. Rakesh Dhawan	Mr.Deshbir Singh
Ms. Neeru Sofat	Mr. Akhileshwar Mishra
Mr. Virendra Singh	