CHEMISTRY MARKING SCHEME

Bhubaneswar-2015
Set 3 - Code No. 56/3/B

\begin{tabular}{|c|c|c|}
\hline Ques. \& Value points \& Marks \\
\hline 1. \& 1-Phenylpropan-2-ol \& 1 \\
\hline 2. \& \[
\begin{aligned}
\& \mathrm{HOCl}, \mathrm{HOClO}, \mathrm{HOClO}_{2}, \mathrm{HOClO}_{3} \\
\& \text { (Any two) }
\end{aligned}
\] \& \(1 / 2+1 / 2\) \\
\hline 3. \& \& 1 \\
\hline 4. \& Negative charge \& 1 \\
\hline 5. \& \(X Y_{3}\) \& 1 \\
\hline 6. \& \begin{tabular}{l}
(i) Potassium hexacyanidoferrate (III) \\
(ii) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right]^{2+}\)
\end{tabular} \& \\
\hline 7. \& \begin{tabular}{l}
(i) Positive deviation, lowering of temperature or absorption of heat. \\
(ii) By applying an external pressure greater than the osmotic pressure on the solution or \(P>\pi\) \\
Reverse osmosis is used in desalination of hard water / sea water.
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2,1 / 2 \\
\& 1 / 2,1 / 2
\end{aligned}
\] \\
\hline 8. \& \begin{tabular}{l}
(i) \(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}\) \\
(ii) \(\mathrm{NaOH} / \mathrm{CaO}, \Delta\) \\
OR
\end{tabular} \& \\
\hline 8. \& \begin{tabular}{l}
(i) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \mathrm{C}_{6} \mathrm{H}_{5}<\mathrm{CH}_{3} \mathrm{COCH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}\) \\
(ii) \(\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}<\mathrm{Cl}_{2} \mathrm{CH}-\mathrm{COOH}<\mathrm{CCl}_{3}-\mathrm{COOH}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 9. \& \begin{tabular}{l}
Formula: \(w=z \times i \times t\)
\[
\text { time taken in } \mathrm{sec}=\frac{w \times \text { Valance } \times 96500}{\text { Mol Mass } \times \text { Current in Amp }}
\] \\
Substituting the values in the formula we get:
\[
\begin{aligned}
\& \text { time taken in } \mathrm{sec}=\frac{1.17 \mathrm{~g} \times 2 \times 96500 \mathrm{C} \mathrm{~mol}^{-1}}{58.5 \mathrm{~g} \mathrm{~mol}^{-1} \times 5 \mathrm{amp}} \\
\& \text { time taken in } \mathrm{sec}=\frac{225810}{292.5} \\
\& \qquad \mathrm{t}=772 \mathrm{~s}
\end{aligned}
\] \\
(Or by any other correct method)
\end{tabular} \& \(1 / 2\)
1
1

$1 / 2$

\hline 10. \& | (i) Due to comparable energies of 5f, 6d and 7s orbitals. |
| :--- |
| (ii) Because $5 f$ electrons have poorer shielding effect than $4 f$ electrons. | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 11. \& \begin{tabular}{l}
(i) Glyptal: \\
Pthalic Acid \\
and \(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\) (ethylene glycol) \\
(ii) Teflon: \\
Monomer: 1,1,2,2-Tetrafluoroethene \\
1,1,2,2-Tetrafluoroethene \\
(iii) Nylon-6 \\
Monomer: Caprolactum \\
Caprolactum \\
(Note : half mark for structure/s and half mark for name/s)
\end{tabular} \& 1

1
1
1

\hline 12. \& | (i) Because of higher oxidation state of Mn in $\mathrm{Mn}_{2} \mathrm{O}_{7}$. |
| :--- |
| (ii) Due to almost similar atomic size / comparable size. |
| (iii) $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ | \& 1

1
1

\hline 13. \& | (i) Maltose |
| :--- |
| (ii) - Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose |
| - \quad Thymine is present in DNA whereas in RNA Uracil is present (Any one) |
| (iii) Beri-Beri | \& 1

1
1

\hline 14. \& $$
\begin{aligned}
& E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.0591}{n F} \log \frac{\left[A^{2+}\right]}{\left[B^{2+}\right]} \\
& 2.6805=\mathrm{E}^{0}{ }_{\text {cell }}-\frac{0.059}{2} \mathrm{~V} \log \frac{[0.0001]}{[0.001]} \\
& 2.6805=\mathrm{E}_{\text {cell }}^{0}-\frac{0.059}{2} \mathrm{~V} \log 10^{-1}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.059 \mathrm{~V}}{2}(-1) \\
& \mathrm{E}_{\text {cell }}^{0}=2.6805=\mathrm{E}_{\text {cell }}^{0}+0.0295 \mathrm{~V} \\
& \mathrm{E}_{\text {cell }}^{0}=2.6510 \mathrm{~V}
\end{aligned}
$$ \& 1

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \& 1 \\
\hline 15. \& \begin{tabular}{l}
(i) Solution is homogeneous colloid is heterogeneous \\
In solution the size of particles (solute) is less than 1 nm whereas in colloids the range of size of particles is \(1-1000 \mathrm{~nm}\left(10^{-9}\right.\) to \(\left.10^{-6} \mathrm{~m}\right)\) (Any one point) \\
(ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in heterogeneous catalysis they are in different phase. \\
(iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil The O/W type emulsion can be diluted with water whereas the W/O emulsion can't be diluted with water. \\
(Any one point)
\end{tabular} \& 1
1
1 \\
\hline 16. \& \begin{tabular}{l}
(i) \(\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CN}\) \\
(ii) \(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COOH}\) \\
(iii) \(\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{NH}_{2}\)
\end{tabular} \& 1
1
1 \\
\hline 17. \& Formula \(\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=\frac{w_{2} \times M_{1}}{M_{2} \times w_{1}}\)
\[
\begin{aligned}
\& \frac{23.75 \mathrm{~mm}-23.375 \mathrm{~mm}}{23.75 \mathrm{~mm}}=\frac{5.0 \mathrm{~g} \times 18 \mathrm{~g} / \mathrm{mol}}{M_{2} \times 95.0 \mathrm{~g}} \\
\& M_{2}=\frac{5.0 \mathrm{~g} \times 18.0 \mathrm{~g} / \mathrm{mol} \times 23.75 \mathrm{~mm}}{95 \mathrm{~g} \times 0.375 \mathrm{~mm}} \\
\& M_{2}=60.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
\] \& 1

1
1

\hline 18. \& | (i) Distillation |
| :--- |
| (ii) Collector / enhancing the non-wettability of mineral particles. |
| (iii) As ΔS is positive / $\Delta \mathrm{G}$ is more negative | \& 1

1
1

\hline 19. \& | (i) Due to the stability of benzyl carbocation/resonance/Diagram |
| :--- |
| (ii) Because 2-Bromobutane has a chiral centre. |
| (iii) Due to $-I$ effect of halogen. | \& 1

1
1

\hline 20. \& | (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[0^{-} 5^{\circ} \mathrm{Cl}]{\mathrm{NaNO}_{2}+\mathrm{HCl}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \xrightarrow[\text { Or Hydrolysis }]{\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ |
| :--- |
| (ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\text { Organic peroxide }]{\mathrm{HBr}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{KOH}_{A q}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ |
| (iii) |
| (Or any correct method) | \& 1

1

1

\hline
\end{tabular}

24.

$$
\begin{aligned}
& k_{1}=\frac{2.303}{20 s} \log \frac{0.4 M}{0.2 M} \\
& k_{1}=0.03 \mathrm{~s}^{-1} \\
& k_{2}=\frac{2.303}{40 \mathrm{~s}} \log \frac{0.4 M}{0.1 M} \\
& k_{2}=0.03 \mathrm{~s}^{-1}
\end{aligned}
$$

Since constant values of rate constants are obtained by applying $1^{\text {st }}$ Order integrated rate law, the reaction is pseudo first order reaction.
(b) Av rate $=\frac{\text { total change in concentration }}{\text { total change in time }}$

> or
> Avrate $=-\frac{\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right] \text { final }-\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right] \text { initial }}{\operatorname{Time}(f)-\operatorname{Time}(i)}$

Av rate $=-\frac{0.10 M-0.20 M}{40 S e c-20 S e c}$
Av rate $=0.0005 \mathrm{M} \mathrm{sec}^{-1}$ or $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
OR
25. a) i) Collision frequency: No of collisions taking place per second per unit volume.
ii) Rate Constant: It is the rate of reaction when the concentration of reactants is unity i.e. 1 M . It is temperature dependent
b) $\log \frac{k_{2}}{k_{1}}=\frac{E a}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$

$$
\begin{aligned}
& \log \frac{k_{2}}{k_{1}}=\frac{E a}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right] \\
& \log 6=\frac{E a}{19.147}\left[\frac{50}{105000}\right] \\
& 0.7782=\frac{E a}{19.147}\left[\frac{50}{105000}\right] \\
& 0.7782=\frac{E a}{19.147}[0.00047619] \\
& \frac{0.7782 \times 19.147}{0.00047619}=E a=31290.44 \mathrm{~J} \\
& E a=31.29 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

