
CHEMISTRY MARKING SCHEME Bhubaneswar – 2015 Set 3 - Code No. 56/3/B

Ques.	Value points	Marks
1.	1-Phenylpropan-2-ol	1
2.	HOCI , HOCIO, HOCIO ₂ , HOCIO ₃ (Any two)	1/2 +1/2
3.	$CH_3 - CH - CH_2 - CH_2 - Br$ CH_3	1
4.	Negative charge	1
5.	XY ₃	1
6.	(i) Potassium hexacyanidoferrate (III) (ii) [Co(NH ₃) ₅ NO ₂] ²⁺	1
7.	 (i) Positive deviation, lowering of temperature or absorption of heat. (ii) By applying an external pressure greater than the osmotic pressure on the solution or P > π Reverse osmosis is used in desalination of hard water / sea water. 	1/2 ,1/2 1/2 , 1/2
8.	(i) H_2 / Pd-BaSO ₄ (ii) NaOH/CaO, Δ	1
8.	(i) $C_6H_5 CO C_6H_5 < CH_3COCH_3 < CH_3CHO$ (ii) $CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	1
9.	Formula: $w=z \times i \times t$ $time \ taken \ in \ sec = \frac{w \times Valance \times 96500}{Mol \ Mass \times Current \ in \ Amp}$	1/2
	Substituting the values in the formula we get: $time \ taken \ in \ sec = \frac{1.17 \ g \times 2 \times 96500 \ C \ mol^{-1}}{58.5 \ g \ mol^{-1} \times 5 \ amp}$ $time \ taken \ in \ sec = \frac{225810}{58.5 \ g \ mol^{-1} \times 5 \ amp}$	1
	$time taken in sec = \frac{223810}{292.5}$ $t=772 s$ (Or by any other correct method)	1/2
10.	(i) Due to comparable energies of 5f, 6d and 7s orbitals. (ii) Because 5f electrons have poorer shielding effect than 4f electrons	1
	(ii) Because 5f electrons have poorer shielding effect than 4f electrons.	1

11.	(i) Glyptal:	1
	СООН	
	and HO-CH ₂ - CH ₂ -OH (ethylene glycol) (ii) Teflon: Monomer: 1,1,2,2-Tetrafluoroethene	1
	$ \begin{array}{cccc} F & F \\ & \\ & \\ F \longrightarrow C \longrightarrow C \longrightarrow F \end{array} $	
	1,1,2,2-Tetrafluoroethene (iii) Nylon-6	
	(iii) Nylon-6 Monomer: Caprolactum	1
	H ₂ C CH ₂ Caprolactum (Note: half mark for structure/s and half mark for name/s)	
12.	(Note: half mark for structure/s and half mark for name/s) (i) Because of higher oxidation state of Mn in Mn ₂ O _{7.}	1
	(ii) Due to almost similar atomic size / comparable size.	1
	(iii) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
13.	(i) Maltose	1
	 (ii) • Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose • Thymine is present in DNA whereas in RNA Uracil is present (Any one) 	1
14.	(iii) Beri-Beri	1
14.	$E_{ceii} = E_{ceii}^0 - \frac{0.0591}{nF} \log \frac{[A^{2+}]}{[B^{2+}]}$	
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V log [0.0001]$ [0.001]	
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} \text{ V log } 10^{-1} = E_{cell}^{0} - \frac{0.059 \text{ V}}{2} (-1)$ $2.6805 = E_{cell}^{0} + 0.0295 \text{ V}$ $E_{cell}^{0} = 2.6805 - 0.0295$	1
	$E_{cell}^{0} = 2.6510 \text{ V}$	

		1
15.	(i) Solution is homogeneous colloid is heterogeneous In solution the size of particles (solute) is less than 1 nm whereas in colloids the range of size of particles is $1 - 1000$ nm (10^{-9} to 10^{-6} m)(Any one point)	1
	(ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in heterogeneous catalysis they are in different phase.	1
	(iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil The O/W type emulsion can be diluted with water whereas the W/O emulsion can't be diluted with water. (Any one point)	1
16.	(i) CH ₃ – CH(OH) – CN	1
	(ii) $C_6H_5 - COOH$	1
	(iii) CH ₃ – CH ₂ NH ₂	1
17.	Formula $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	1
	$\frac{23.75 mm - 23.375 mm}{23.75 mm} = \frac{5.0 g \times 18 g / mol}{M_2 \times 95.0 g}$	
	$M_2 = \frac{5.0 g \times 18.0 g / mol \times 23.75 mm}{95 g \times 0.375 mm}$	1
	$M_2 = 60.0 \text{g/mol}$	1
18.	(i) Distillation	1
	(ii) Collector / enhancing the non-wettability of mineral particles.	1
	(iii) As ΔS is positive /ΔG is more negative	1
19.	(i) Due to the stability of benzyl carbocation/resonance/Diagram	1
	(ii) Because 2-Bromobutane has a chiral centre.	1
20.	(iii) Due to – I effect of halogen. (i) C.H.NH. NaNO ₂ +HCl C.H.N.Cl H ₂ O+H ⁺ C.H.OH	1
	(i) $C_6H_5NH_2 \xrightarrow{NaNO_2 + HCl} C_6H_5N_2Cl \xrightarrow{H_2O + H^+} C_6H_5OH$	
	(ii) $CH_3 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - CH_2Br \xrightarrow{KOH_{Aq}} CH_3CH_2CH_2OH$	1
	(iii)	
	OCH ₃ CH ₃ Cl Anh.AlCl ₃	
	Anisole 2-Methoxytoluene CH ₃	1
	(Or any correct method)	

	OR	
20.	(i) $CH_3 - CH_2 - CH_2OH \xrightarrow{Cu/573K} CH_3CHO + H_2$	1
	(ii)	1
	OH CH ₃ COCl Anh. AlCl ₃ COCH ₃ Phenol 2-Hydroxyacetophenone COCH ₃ 4-Hydroxyacetophenone (iii) $C_2H_5Cl + NaOCH_3 \rightarrow C_2H_5-O-CH_3 + NaCl$	1
21.	(iii) $t_{2g}^3 e_g^1$ (iii) Hybridization dsp^2 , Shape \rightarrow Square planar or diagram NC NC NC NC NC NC NC NC NC N	1 1 1/2 1 1/2
22.	(i) Stoichiometric Defect (ii) Frenkel Defect (iii) Due to small size of Ag ⁺ ion	1 1 1
23.	 (i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caring or any other (Any two) (ii) Through posters, nukkad natak in community, social media, play in assembly or any other (Any two) (iii) Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders. Eg: equanil (or any other suitable example) (iv) Aspartame is unstable at cooking temperature. 	1 ½,½ 1

		1
	$k_1 = \frac{2.303}{20s} \log \frac{0.4M}{0.2M}$	1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$k_1 = 0.03 \text{ s}^{-1}$	
		1
	2.303, 0.4M	
	$k_2 = \frac{2.303}{40s} \log \frac{0.4M}{0.1M}$	
	105 0.11/1	
	$k_2 = 0.03 \text{ s}^{-1}$	
	κ ₂ 0.03 3	
	Since constant values of rate constants are obtained by applying 1 st Order integrated rate	1/2
	law, the reaction is pseudo first order reaction.	
	law, the reaction is pseudo hist order reaction.	
	total shanes in some outration	1/2
	(b) $Av rate = \frac{total \ change \ in \ concentration}{total \ change \ in \ times}$	
	total change in time	
	or	
	$Av \ rate = -\frac{[CH_3COOCH_3]final - [CH_3COOCH_3]initial}{Time(f) - Time(i)}$	
	Time(f) - Time(i)	
		1
	0.10M - 0.20M	_
	$Av rate = -\frac{0.10 M - 0.20 M}{40 Sec - 20 Sec}$	1/2
		/2
	Av rate = $0.0005 \text{ M sec}^{-1} \text{ or } 5.0 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}$	
	OR	
25.	a) () Called a face and the facilitation of the face of the second and the second	
25.	a) i) Collision frequency: No of collisions taking place per second per unit volume.	1
	ii) Rate Constant: It is the rate of reaction when the concentration of reactants	1
	is unity i.e. 1 M. It is temperature dependent	1
	b) $\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
	$\frac{1}{108} \frac{1}{k_1} - \frac{1}{2.303R} \frac{1}{T_1 T_2}$	1
		1
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left \frac{T_2 - T_1}{T_1 T_2} \right $	
	$\begin{bmatrix} k_1 & 2.303R & T_1T_2 \end{bmatrix}$	
	$Ea $ $\begin{bmatrix} 50 \end{bmatrix}$	
	$\log 6 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	
	$0.7782 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	
		1
	$0.7782 = \frac{Ea}{19.147} [0.00047619]$	
	12.11.7	
	$\frac{0.7782 \times 19.147}{0.00047619} = Ea = 31290.44 \text{ J}$	
	$\frac{-0.00047619}{0.00047619}$	1
	Ea = 31.29 kJ/mol	
		•

26.	a)	
	(i) The +3 Oxidation state of Bi is more stable than Sb(III).	1
	(ii) Because the electronegativity of Cl is greater than that of I.	1
	(iii) Due to decrease in electronegativity and increase in the atomic size.	1
	(b) $ \begin{array}{c} \text{SF4} & \text{F} \\ \\ \text{F} \end{array} $ $ \begin{array}{c} \text{XeF2} & \text{F} \\ \\ \text{Xe} \end{array} $ $ \begin{array}{c} \text{XeF2} \\ \\ \text{F} \end{array} $ $ \begin{array}{c} \text{F} \\ \\ \text{F} \end{array} $ $ \begin{array}{c} \text{OR} \end{array} $	1+1
	i) Due to formation of fumes of HCl or equation	
26.		1
		1
	iii) Due of loss of Chlorine. The yellow colour is due to dissolved Cl_2 . On standing the Cl_2 is consumed in reacting with water to form colourless products: $Cl_2 + H_2O \rightarrow HOCI + HCI$ $2HOCI \rightarrow 2HCI + O_2$	1
	311.00	1
	Oxidation state of P is +3 Oxidation state of P is +5 Oxidation state of P is -3	1
	$V) \qquad 2F_2 + 2H_2O \rightarrow 4HF + O_2$	1