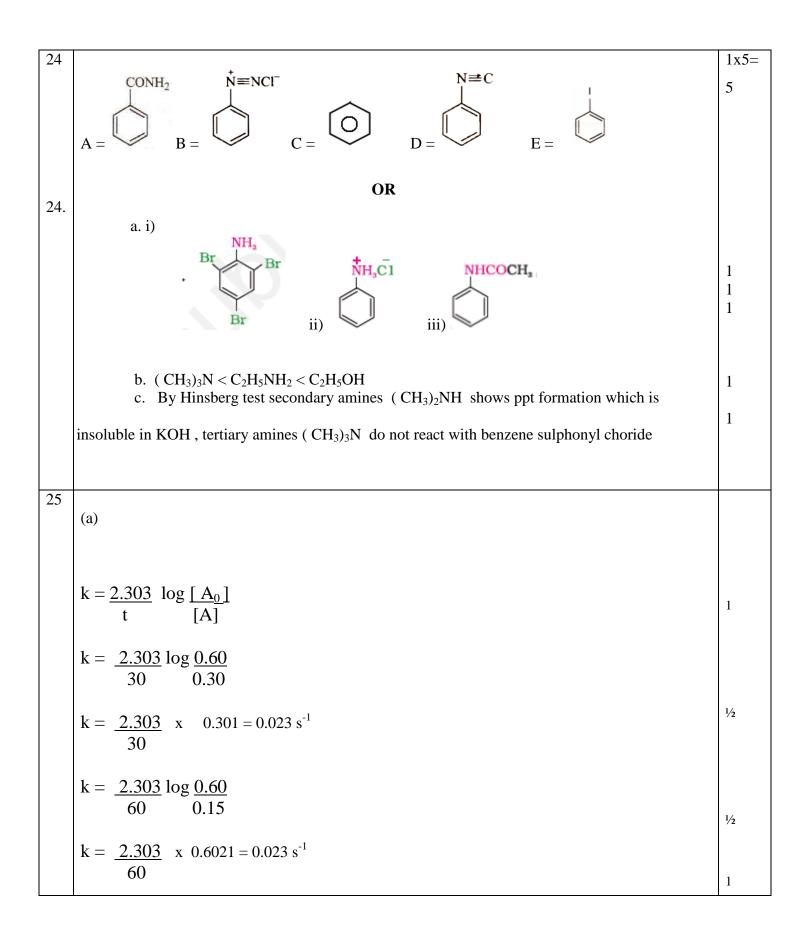
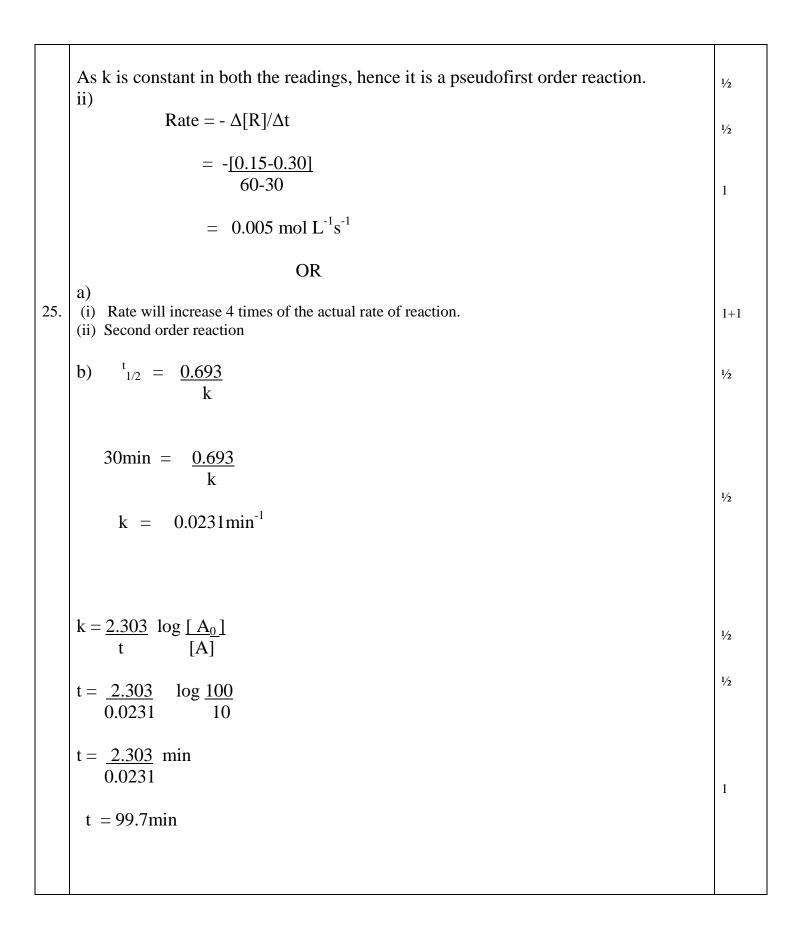
Downloaded From: http://www.cbseportal.com <u>CHEMISTRY MARKING SCHEME</u> <u>DELHI -2015</u> <u>SET -56/1/2/D</u>


Qu	Value points	Marks
es. 1	CH ₃ -CH ₂ -Br	1/2 +1/2
•		72 172
	Because it is a primary halide / (1 ⁰) halide	
2	BaCl ₂ because it has greater charge / +2 charge	1/2 +1/2
3	X_2Y_3	1
4	3	1
5	2, 5 - dinitrophenol	1
6.	(i)LiAlH ₄ / NaBH ₄ /H ₂ , Pt (ii)KMnO ₄ , KOH	1 1
7.	When vapour pressure of solution is higher than that predicted by Raoult's law /	1
	the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than	1/2
	those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/ CS_2 -acetone or any other correct example $\Delta_{mix}H$ is positive	1/2
	OR	
7.	(a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase	1
,.	and boil at a constant temperature.	
	(b) Minimum boiling azeotrope	1/2
	eg - ethanol + water or any other example	1/2
8.	$(i)Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	1/2
	Reaction with higher E^0 value / ΔG^0 negative	1/2
	(ii) Molar conductivity of a solution at infinite dilution or when concentration approaches	1/2
	zero Number of ions per unit volume decreases	1/2
9.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation	1
<i>,</i>	states.	•
	1) Variable oxidation states	1/2 +1/2
	2) Form coloured ion	
	Or any other two correct characteristics	
10	1) Diamminedichloridoethylenediaminechromium(III) chloride	1+ 1
	2) $[Co(NH_3)_5(ONO)]^{2+}$	


11	(i)	
	H ₁ N NH ₁ H ₂ N CI	
	p pı	
	CI CI NH,	
	cis-isomer trans-isomer	1
		1
	(ii)t ₂ g ³ e g ¹	1/2+ 1/2
10	(iii) sp ³ , diamagnetic	/21 /2
12	The cell reaction: $Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$	
	$E_{cell}^{o} = E_{c}^{o} - E_{a}^{o}$	
	$E_{\text{cell}} = E_{\text{c}} - E_{\text{a}}$ = $[0-(-0.44)]V=0.44V$	
	$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \underline{0.059} \log \left[Fe^{2+} \right]$	
	$2 \qquad \left[H^{+} \right]^{2}$	1
		1
	$E_{cell} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$	
	$2 \qquad (0.01)^{-}$	
		1
	$= 0.44 \text{ V} - \underline{0.059} \log (10)$	
	2	
	= 0.44 V - 0.0295 V	
	=≈ 0.410 V	1
13	(i) mutual coagulation	1
	(ii)strong interaction between dispersed phase and dispersion medium or solvated layer	1
	(iii)CO acts as a poison for catalyst.	1
14	(i)Hexamethylene diamine NH ₂ (CH ₂) ₆ NH ₂ and	1/2
	adipic acid HOOC- (CH ₂) ₄ - COOH	1/2
	(ii)3 hydroxybutanoic acid CH ₃ CH(OH)CH ₂ COOH and	1/2
	3 hydroxypentanoic acid CH ₃ CH ₂ CH(OH)CH ₂ COOH	1/2
	(iii)Chloroprene H ₂ C=C(Cl)CH=CH ₂ IUPAC names are accepted	1/2
		1/2
	Note: ½ mark for name /s and ½ mark for structure / s	
15	(i)CH ₃ CH ₂ CH ₃	1
	(ii) $C_6H_5COONa + CHI_3$	1/2, 1/2
	(iii)CH ₄	1

16.	(i) $C_6H_5OH + NaOH \rightarrow C_6H_5ONa$ CH ₃ X $C_6H_5OCH_3$	
	Or $C_6H_5OH + Na \rightarrow C_6H_5ONa$ $CH_3X \rightarrow C_6H_5OCH_3$	
		1
	(ii)CH ₃ CH(OH)CH ₃ CrO_3 or $Cu/573$ K CH_3COCH_3 (i)CH ₃ MgX (CH ₃) ₂ C(OH)CH ₃ (ii)H ₂ O	1
	(11)1120	
	(:::)CHNIL NANO - HOLCHN CLHO - CHOH	
	(iii) $C_6H_5NH_2$ NaNO ₂ + HCl $C_6H_5N_2Cl$ H ₂ O warm C_6H_5OH 273K	1
16.	OR	
	a) •••	
	(i) $CH_3-CH_2-\overset{\Box}{O}-H + \overset{H^+}{H^-} \longrightarrow CH_3-CH_2-\overset{\Box}{O}-H$	1/2
	CH .H	1/2
	(ii) $CH_3CH_2 = \overset{\circ}{O}: + CH_3 = CH_2 = \overset{\circ}{O} = CH_3CH_2 = \overset{\circ}{O} = CH_2CH_3 + H_2O$	
	(iii) CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 \longrightarrow CH_2CH_3 + H	1
	b)	
	соон	
	OCOCH ₃	
	+ (CH ₃ CO) ₂ O→ + CH ₃ COOH	1
1.7	(Acetyl chloride instead of acetic anhydride may be used)	1
17	(i)Maltose	1
	(ii) fibrous proteins: parallel polypeptide chain, insoluble in water Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference)	1
	(iii) Vitamin D	1
18	(i)Larger surface area, higher van der Waals' forces, higher the boiling point	1
	(ii)Rotation due to one enantiomer is cancelled by another enantiomer	1
	(iii) - NO ₂ acts as Electron withdrawing group or –I effect	1

10		1
19	$\Delta T_f = i K_f m$ $\Delta T_f = i K_f \underline{m_b \times 1000}$	1/2
	$\mathbf{M}_{\mathrm{b}} \mathbf{x} \mathbf{m}_{\mathrm{a}}$	
	$1.62 \text{ K} = \text{ i } \text{ x } 4.9 \text{ K kg mol}^{-1} \text{ x } \underbrace{3.9 \text{ g}}_{122 \text{ gmol}^{-1}} \text{ x } \underbrace{1000}_{49 \text{ kg}}$	1
	i = 0.506	1/2
	Or by any other correct method	
	As i<1, therefore solute gets associated.	1
20	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode.	1
	(ii) Silica acts as flux to remove iron oxide which is an impurity as slag or $FeO + SiO_2 \rightarrow FeSiO_3$ (iii) Wrought iron	1 1
21	$d = z \times M$	1/2
	$z = \underline{d} \frac{a^3 N_A}{a^3 N_A}$	
	$\frac{z-\frac{ua-v_A}{M}}{M}$	
	$z = \frac{2.7 \text{ g cm}^{-3} \text{ x } 6.022 \text{ x} 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{cm})^{3}}{27 \text{ g mol}^{-1}}$	1
	27 g mol ⁻¹	1/2
	= 3.999 ≈ 4	
	Face centered cubic cell/ fcc	1
22	(i) 5f orbital electrons have poor shielding effect than 4f	1
	(ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital.	1
	(iii) $2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O} + 5 \text{ NO}_3^-$	1
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other	1
	(ii)Through posters, nukkad natak in community, social media, play in assembly or any other (iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders Eg:	1/2, 1/2
	equanil (or any other suitable example)	
	(iv) Aspartame is unstable at cooking temperature.	1

Downloaded From: http://www.cbseportal.com

26.	 (a) (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic character observed. (ii)Oxygen exists as diatomic O₂ molecule while sulphur as polyatomic S₈ 	1
	(iii)Due to non availability of d orbitals	1
		1
		1
	(b)	
	F	
		1
	CL	
		1
	FF	
	FF	
26.		
	OR	
	(i) White Phosphorus because it is less stable due to angular strain	1/2 , 1/2
	(ii)Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.	
	Or $NO+O_3 \rightarrow NO_2+O_2$ (iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the	1
	lone pairs of fluorine (iv)Helium	1
	(v) VoE + DE -> (VoE)+ (DE)-	1
	$(v) XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$	1