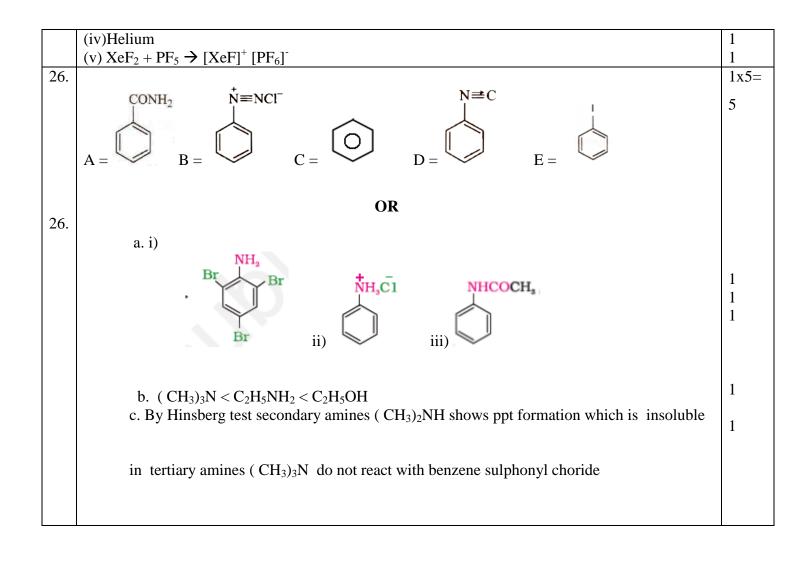
Downloaded From: http://www.cbseportal.com <u>CHEMISTRY MARKING SCHEME</u> <u>DELHI -2015</u> <u>SET -56/1/3/D</u>

Qu es.	Answers	Marks
1	BaCl ₂ because it has greater charge / +2 charge	1/2 +1/2
2	X_2Y_3	1
3	3	1
4	2, 5 - dinitrophenol	1
5	CH ₃ -CH ₂ -Br	1/2 +1/2
	Because it is a primary halide $/(1^0)$ halide	
6.	When vapour pressure of solution is higher than that predicted by Raoult's law /	1
	the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than	1⁄2
	those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/CS ₂ -acetone or any other correct example Δ_{mix} H is positive	1⁄2
	OR	
	(a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase	1
	and boil at a constant temperature.	
	(b) Minimum boiling azeotrope	1⁄2
	eg - ethanol + water or any other example	1⁄2
7.	$(i)Ag^+(aq) + e^- \rightarrow Ag(s)$	1⁄2
	Reaction with higher E^0 value / ΔG^0 negative (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches	1/2 1/2
	zero Number of ions per unit volume decreases	1⁄2
8.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states.	1
	1) Variable oxidation states	1/2 +1/2
	2) Form coloured ion Or any other two correct characteristics	
9.	1) Diamminedichloridoethylenediaminechromium(III) chloride	1+1
	2) $[Co(NH_3)_5(ONO)]^{2+}$	

10	(i)LiAlH ₄ / NaBH ₄ /H ₂ , Pt	1
	(ii)KMnO ₄ , KOH	1
11	(i)Hexamethylene diamine $NH_2 (CH_2)_6 NH_2$ and adipic acid HOOC- $(CH_2)_4$ - COOH (ii)3 hydroxybutanoic acid $CH_3CH(OH)CH_2COOH$ and 3 hydroxypentanoic acid $CH_3CH_2CH(OH)CH_2COOH$ (iii)Chloroprene $H_2C=C(CI)CH=CH_2$ IUPAC names are accepted Note : $\frac{1}{2}$ mark for name /s and $\frac{1}{2}$ mark for structure / s	$ \begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array} $
12	(i) $CH_3CH_2CH_3$ (ii) $C_6H_5COONa + CHI_3$ (iii) CH_4	1 1⁄2, 1⁄2 1
13	(i) $C_6H_5OH + NaOH \rightarrow C_6H_5ONa$ <u>CH_3X</u> $C_6H_5OCH_3$ Or $C_6H_5OH + Na \rightarrow C_6H_5ONa$ <u>CH_3X</u> $C_6H_5OCH_3$	1
	(ii)CH ₃ CH(OH)CH ₃ CrO_3 or Cu/573K CH ₃ COCH ₃ (i)CH ₃ MgX (CH ₃) ₂ C(OH)CH ₃ (ii)H ₂ O (CH ₃) ₂ C(OH)CH ₃	1
	(iii) $C_6H_5NH_2$ <u>NaNO₂ + HCl</u> $C_6H_5N_2Cl$ <u>H₂O warm</u> C_6H_5OH 273K	1
12	OR	
13	a) H	
	(i) $CH_3 - CH_2 - \overset{\cdots}{O} - H + H^* \longrightarrow CH_3 - CH_2 - \overset{\cdots}{O} - H$	1⁄2
	(ii) $CH_3CH_2 - \overset{\circ}{O}_H + CH_3 - CH_2 - \overset{\circ}{O}_H + CH_3CH_2 - \overset{\circ}{O}_H - CH_2CH_3 + H_2O$	1/2
	(iii) $CH_3CH_2 \xrightarrow{\bullet} - CH_2CH_3 \longrightarrow CH_3CH_2 \xrightarrow{\bullet} -CH_2CH_3 + H$	1
	b)	
	$\begin{array}{c} \text{COOH} \\ & \downarrow \\ \text{OH} \\ & + (CH_3CO)_2O \xrightarrow{-} \\ \end{array} \begin{array}{c} \text{COOH} \\ & \downarrow \\ OCOCH_3 \\ & + CH_3COOH \end{array}$	
		1

	(Acetyl chloride instead of acetic anhydride may be used)	
14	(i)Maltose	1
	(ii) fibrous proteins: parallel polypeptide chain, insoluble in water	1
	Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference)	1
	(iii) Vitamin D	
15	(i)Larger surface area, higher van der Waals' forces, higher the boiling point	1
	(ii)Rotation due to one enantiomer is cancelled by another enantiomer	1
	(iii) - NO ₂ acts as Electron withdrawing group or -I effect	1
16.	$\Delta T_{f} = i K_{f} m$	
	$\Delta T_{f} = I K_{f} III$ $\Delta T_{f} = I K_{f} III I I I I I I I I I I I I I I I I I$	1⁄2
	$M_b \ge m_a$	
	$1.62 \text{ K} = i \times 4.9 \text{ K kg mol}^{-1} \times \underline{3.9 \text{ g}}_{122 \text{ gmol}^{-1}} \times \underline{1000}_{49 \text{ kg}}$	
	122 gmol^{-1} 49 kg	1
	i = 0.506	1⁄2
	Or by any other correct method	
	As i<1, therefore solute gets associated.	1
17	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure	1
	metal gets deposited on cathode from anode. (ii)Silica acts as flux to remove iron oxide which is an impurity as slag or FeO + SiO ₂ \rightarrow FeSiO ₃	1
	(iii)Wrought iron	1
18	$d = \frac{z \times M}{a^3 N_A}$	1/2
	$z = \frac{d a^3 N_A}{d a^3 N_A}$	
	$\mathbf{z} = \frac{2.7 \text{ g cm}^{-3} \text{ x } 6.022 \text{ x} 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{ cm})^{3}}{2}$	
	$\frac{2.7 \text{ g cm}^{-1} \times 0.022 \times 10^{-1} \text{ mor}^{-1} \times (4.03 \times 10^{-1} \text{ cm})}{27 \text{ g mol}^{-1}}$	1
	$-2.000 \sim 4$	1⁄2
	$= 3.999 \approx 4$ Face centered cubic cell/ fcc	1
10		
19	(i) 5f orbital electrons have poor shielding effect than 4f(ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher	1
	d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital.	1
	(iii) $2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O} + 5 \text{ NO}_3^-$	1

Downloaded From: http://www.cbseportal.com


20	(i)	
	$H_{1}N \qquad H_{2}N \qquad H_{1}N \qquad H_{2}N \qquad CI \qquad CI \qquad CI \qquad NH,$	
	cis-isomer trans-isomer	1
	(ii) $t_{2g}^{3} e_{g}^{1}$ (iii) sp ³ , diamagnetic	$ \begin{array}{c c} 1 \\ \frac{1}{2+\frac{1}{2}} \end{array} $
21	The cell reaction : $Fe(s) + 2H^+(aq) \rightarrow Fe^{2+}(aq) + H_2(g)$	
	The confederation $\Gamma(g) + 2\Pi(aq) + \Pi(aq) + \Pi_2(g)$	
	$E^{o}_{cell} = E^{o}_{c} - E^{o}_{a}$ = [0-(-0.44)]V=0.44V	
	$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} \log \frac{[Fe^{2+}]}{[H^{+}]^{2}}$	1
	$E_{cell} = 0.44 \text{ V} - \underline{0.059} 2 \log (\underline{0.001}) (\underline{0.01})^2$	1
		1
	$= 0.44 \text{ V} - \frac{0.059}{2} \log (10)$	
	= 0.44 V - 0.0295 V	
	=≈ 0.410 V	1
22	(i) mutual coagulation	1
	(ii)strong interaction between dispersed phase and dispersion medium or solvated layer (iii)CO acts as a poison for catalyst or iron	1 1
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other	1
	(iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders Eg: equanil (or any other suitable example)	1/2, 1/2
	(iv) Aspartame is unstable at cooking temperature.	1

-		· · · · · · · · · · · · · · · · · · ·
24	(a)	
	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1
	$k = \frac{2.303}{30} \log \frac{0.60}{0.30}$	1/2
	$k = \frac{2.303}{30} x 0.301 = 0.023 s^{-1}$	/2
	$k = \frac{2.303}{60} \log \frac{0.60}{0.15}$	1/2
	$k = \frac{2.303}{60} \times 0.6021 = 0.023 \text{ s}^{-1}$	1
	As k is constant in both the readings, hence it is a pseudofirst order reaction. ii)	1⁄2
	Rate = - $\Delta[R]/\Delta t$	1/2
		/2
	= -[0.15 - 0.30]	
	60-30	
		1
	$= 0.005 \text{ mol } \text{L}^{-1} \text{s}^{-1}$	
	OR	
	a)	
24.	(i) Rate will increase 4 times of the actual rate of reaction.(ii) Second order reaction	1+1
	b) $t_{1/2} = 0.693 \\ k$	1/2
	ĸ	, -
	$30\min = 0.693$	
	K	

Downloaded From: http://www.cbseportal.com

	$k = 0.0231 \text{min}^{-1}$	
	$\mathbf{K} = 0.025111111$	1⁄2
	$k = 2.303 \log [A_0]$	
	\overline{t} $\overline{[A]}$	
	$t = 2.303 \log 100$	1/2
	0.0231 10	
		1⁄2
	$t = 2.303 \min$	
	0.0231	
	t = 99.7 min	
25	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic	1
23	character observed.	1
	(ii)Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8	
	(iii)Due to non availability of d orbitals	1
		1
	(b)	
	F	
		1
	F	1
	F	
	F	
25	••	
	(i) White Phosphorus because it is less stable due to angular strain(ii)Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.	1/2 , 1/2
	Or $NO+O_3 \rightarrow NO_2+O_2$	1
	(iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the	1
	lone pairs of fluorine	1
L		

Downloaded From: http://www.cbseportal.com

