CHEMISTRY MARKING SCHEME
 PATNA
 SET -56/2/P

$\begin{aligned} & \text { Qu } \\ & \text { es. } \end{aligned}$	Answers	Marks
1	Because of no unpaired electron in $\mathbf{Z n}{ }^{2+}$ Copper salts are coloured due to the presence of unpaired electrons in $\mathbf{C u}^{2+}$	$1 / 2+1 / 2$
2	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$	1
3	2 F or 2 x 96500 C	1
4	Dispersed phase -liquid Dispersion medium - solid	$1 / 2+1 / 2$
5	2-Methylprop-2-en-1-ol	1
6	(i) (ii)	1,1
7	Dichloridobis-(ethane-1,2-diamine)platinum(IV) Geometrical or optical isomerism OR (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ (ii) $\mathrm{K}_{2}\left[\mathrm{NiCl}_{4}\right]$	1 1 1 1
8	Decrease in concentration of reactant or increase in concentration of product per unit time Factrors: 1)concentration of reactant 2)catalyst 3) temperature 4)Nature of reactant 5)pressure 6)surface area (any two)	1 $1 / 2+1 / 2$

\begin{tabular}{|c|c|c|}
\hline 9 \& \begin{tabular}{l}
(i) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}\) \\
(ii)
\end{tabular} \& \\
\hline 10 \& \begin{tabular}{l}
Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher \\
Because it depends on molality/ number of solute particles / \(\Delta \mathrm{T}_{\mathrm{b}} \propto \mathrm{m}\)
\end{tabular} \& \\
\hline 11 \& \begin{tabular}{l}
(i)Greater solubility of impurities in molten state. \\
(ii)Silica reacts with impurity FeO to form slag \(\left(\mathrm{FeSiO}_{3}\right)\) / acts as a flux to remove impurities. \\
(iii)Cast iron is harder than pig iron / has lesser content of carbon.
\end{tabular} \& \[
\begin{aligned}
\& \hline 1 \\
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \\
\hline 12 \& \begin{tabular}{l}
(i)Because of the presence of triple bond between two N atoms / high bond dissociation enthalpy \\
(ii)Because of the lowest bond dissociation enthalpy /least thermal stability. \\
(iii)Because of low solubility in blood.
\end{tabular} \& \\
\hline 13 \& \begin{tabular}{l}
(i) \(\left[\mathrm{CoF}_{6}\right]^{3-} \quad \mathrm{sp}^{3} \mathrm{~d}^{2} \quad\) octahedral \\
(ii) \(\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \mathrm{dsp}^{2}\) square planar \\
(b) CO , because of synergic /back bonding with metal
\end{tabular} \& \[
\begin{array}{ll}
1 / 2 \& 1 / 2 \\
1 / 2 \& 1 / 2 \\
1 / 2 \& 1 / 2
\end{array}
\] \\
\hline 14 \& \& 1

1

\hline
\end{tabular}

14	(i)	
		1
	(ii) $\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\text { Heat }} \mathrm{R}-\mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{R}=\quad-\mathrm{C}_{6} \mathrm{H}_{5}\right)$	1
	(iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HCl} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$	1
15	i)Buna -S Butadiene Styrene $\mathbf{C H}_{2}=\mathbf{C H}-\mathbf{C H}=\mathbf{C H}_{2}$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
	ii)Glyptal Ethylene Glycol Pthalic acid	1/2
		1/2
	$\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$	
	iii)Polyvinyl chloride Vinyl Chloride $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$ (Note: half mark for name/s and half mark for structure/s)	$1 / 21 / 2$
16	i)	
		1
	(ii)Because of zwitter ion nature of amino acid / (iii)Because vitamin C is soluble in water.	1
		1

\begin{tabular}{|c|c|c|}
\hline 17 \& \[
\begin{aligned}
\& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\
\& \mathrm{~T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}=\frac{\mathrm{K}_{\mathrm{f}} \mathrm{~W}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{W}_{\mathrm{A}}} \\
\& 273 \mathrm{~K}-\mathrm{T}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{31 \mathrm{~g}}{62 \mathrm{gmol}^{-1}} \quad \text { x } \frac{1000}{500 \mathrm{~kg}} \\
\& \mathrm{~T}_{\mathrm{f}}=(273-1.86) \mathrm{K} \\
\& \mathrm{~T}_{\mathrm{f}}=271.14 \mathrm{~K} \quad \text { Or }-1.86^{0} \mathrm{C}
\end{aligned}
\] \& 1
1
1 \\
\hline 18 \& \begin{tabular}{l}
(i) Unit cells having constituent particles at the corner positions. \\
(ii) The defect occurs due to missing of equal no of cations and anions in a lattice. \\
(iii) The permanent magnetism which arises when magnetic moments of substance are aligned in same direction.
\end{tabular} \& 1
1
1 \\
\hline 19 \& \begin{tabular}{l}
i) \\
ii) \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\) \\
iii)
\end{tabular} \& 1

1
1
1

\hline 20 \& | (i)Because phenoxide ion is more stable than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$ion / due to resonance in phenol, oxygen acquires positive charge and releases H^{+}ion easily whereas there is no resonance in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ |
| :--- |
| (ii)Because of hydrogen bonding in ethanol |
| (iii)Because it follows SN_{1} path way which results in the formation of stable $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$. | \&

\hline 21 \& $$
\begin{aligned}
& \log \frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T 1}-\frac{1}{T 2}\right] \\
& \log \frac{4 \times 10^{-2}}{2 \times 10^{-2}}=\frac{E_{a}}{2.303 \times 8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}} \quad\left[\frac{1}{300}-\frac{1}{310}\right] \\
& \log 2=\frac{E_{a}}{19.147 \mathrm{~J} / \mathrm{mol}} \quad\left[\frac{10}{300 \times 310}\right] \\
& E_{a}=\frac{0.3010 \times 19.147 \times 300 \times 310}{10} \\
& E_{a}=53598 \mathrm{~J} / \mathrm{mol} \text { or } 53.598 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$ \& 1

1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 22 \& \begin{tabular}{l}
(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles of dispersion medium. \\
(ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte. \\
(iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range.
\end{tabular} \& 1
1
1 \\
\hline 23 \& \begin{tabular}{lll}
i) \& Caring, concerned, helping,empathy (any two) \& \\
ii) \& \begin{tabular}{l}
By organizing competitions like slogan writing, poster making and talk in the morning \\
assembly (any other correct answer)
\end{tabular} \\
iii) \& Used to treat depression,. Iproniazid/phenelzine \& (any other correct example) \\
iv) \& Saccharin/ sucralose/aspartame/alitame \& (any other correct example)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 21 / 2 \\
\& 1 \\
\& 1 / 21 / 2 \\
\& 1
\end{aligned}
\] \\
\hline 24 \& \multirow[t]{4}{*}{\begin{tabular}{l}
OR \\
a)
\[
\begin{array}{ll}
\& \mathbf{M}=\mathbf{0 . 2 0 M} \quad \mathbf{K}=\mathbf{2 . 4 8 \times 1 0} \mathbf{N a}^{-2} \mathbf{S} / \mathbf{c m} \\
\Lambda_{m}= \& \frac{K}{M} \times 1000 \mathrm{Scm}^{2} / \mathrm{mol} \\
\Lambda_{m}=\frac{2.48 \times 10^{-2}}{0.20} \times 1000 \mathrm{Scm}^{2} / \mathrm{mol} \& \\
=124 \mathrm{Scm} / \mathrm{mol} \& \\
\qquad \& \alpha=\frac{\Lambda_{m}}{\Lambda_{m}{ }^{0}} \\
\Lambda_{m}{ }^{0}= \& \lambda^{0} K^{+}+\lambda C l^{-}
\end{array}
\]
\end{tabular}} \& 1
1

1

\hline \& \& $1 / 2$
$1 / 2$

1

\hline \multirow[t]{2}{*}{24} \& \& $1 / 2$
1

\hline \& \& 1/2

\hline
\end{tabular}

