
CHEMISTRY MARKING SCHEME PATNA SET -56/2/P

Qu es.	Answers	Marks
1	Because of no unpaired electron in Zn ²⁺ Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺	1/2 +1/2
2	(CH ₃) ₃ C-Br	1
3	2F or 2x 96500C	1
4	Dispersed phase -liquid Dispersion medium - solid	1/2 +1/2
5	2-Methylprop-2-en-1-ol	1
6	(i) F Xe F	1,1
7	Dichloridobis-(ethane-1,2-diamine)platinum(IV)	1
	Geometrical or optical isomerism	
	OR	1
	(i)[Co(NH ₃) ₆]Cl ₃	1
	$(ii)K_2[NiCl_4]$	1
8	Decrease in concentration of reactant or increase in concentration of product per unit time	1
	Factrors: 1)concentration of reactant 2)catalyst 3) temperature 4)Nature of reactant	
	5)pressure 6)surface area (any two)	1/2 +1/2

$(i) C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$	1
(ii)	
NH ₂ NH ₃ NH ₂ CH ₃	1
Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	1
 (i)Greater solubility of impurities in molten state. (ii)Silica reacts with impurity FeO to form slag (FeSiO₃) / acts as a flux to remove impurities. (iii)Cast iron is harder than pig iron / has lesser content of carbon. 	1 1 1
(i)Because of the presence of triple bond between two N atoms / high bond dissociation enthalpy (ii)Because of the lowest bond dissociation enthalpy /least thermal stability. (iii)Because of low solubility in blood.	1 1 1
$(i)[CoF_6]^{3-}$ sp ³ d ² octahedral	1/2 1/2
(ii) [Ni(CN) ₄] ²⁻ dsp ² square planar	1/2 1/2
(b) CO, because of synergic /back bonding with metal	1/2 1/2
(i) $C_6H_5CONH_2$ $Er_2 + KOH$ $C_6H_5NH_2$	1
(ii) $C_6H_5NH_2$ $ \begin{array}{c} NaNO_2 + HCI \\ \hline 0 - 5 C^0 \end{array} $ $C_6H_5N^+_2CI^-$ C_6H_5OH	1
(iii) CH₃CN LiAlH CH₃CH₂ NH₂	1
OR	
	Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$ (i) Greater solubility of impurities in molten state. (ii) Silica reacts with impurity FeO to form slag (FeSiO ₃) / acts as a flux to remove impurities. (iii) Cast iron is harder than pig iron / has lesser content of carbon. (i) Because of the presence of triple bond between two N atoms / high bond dissociation enthalpy (ii) Because of the lowest bond dissociation enthalpy (iii) Because of low solubility in blood. (i) [CoF ₆] ³⁻ sp ³ d ² octahedral (ii) [Ni(CN) ₄] ²⁻ dsp ² square planar (b) CO , because of synergic /back bonding with metal (i) C ₆ H ₃ CONH ₂ NaNO ₂ + HCl 0 - 5 C ⁶ C ₆ H ₃ N ⁺ ₂ CT H ₂ O. C ₆ H ₃ OH (ii) CH ₃ CN LiAlH ₄ CH ₃ CH ₂ NH ₂

17		
	$\Delta T_{\rm f} = K_{\rm f} m$	1
	$T_f^0 - T_f = \frac{K_f W_B \times 1000}{M_B \times W_A}$	
	$M_B \times W_A$	
	1 31 <i>a</i> 1000	1
	$273K - T_f = 1.86K \text{ kg mol}^{-1} \text{ x} = \frac{31g}{62gmol^{-1}} \text{ x} = \frac{1000}{500kg}$	
	$T_f = (273-1.86) \text{ K}$	
		1
	$T_f = 271.14K$ Or $-1.86^{\circ}C$	
18	(i) Unit cells having constituent particles at the corner positions.	1
	(ii) The defect occurs due to missing of equal no of cations and anions in a lattice.	
	(iii) The permanent magnetism which arises when magnetic moments of substance are aligned	1
4.0	in same direction.	1
19	$_{ m Br}$	1
	$CH_3 - CH_2 - C - CH_3$	
	i) CH ₃	
	CH CH CH CH	
	$_{ii)}$ $CH_3 - CH_2 - CH = CH - CH_3$	
		1
	\mathbf{Br}	
		1
	$_{ m iii)}$ $^{ m CH_3}$	
20		1
20	(i)Because phenoxide ion is more stable than CH ₃ CH ₂ O ion / due to resonance in phenol,	1
	oxygen acquires positive charge and releases H ⁺ ion easily whereas there is no resonance in	
	CH ₃ CH ₂ OH	
	(ii)Because of hydrogen bonding in ethanol	1
	(iii) Pagayon it follows CN, noth way which recoults in the formation of stable (CH) C+	
	(iii)Because it follows SN ₁ path way which results in the formation of stable (CH ₃) ₃ C ⁺ .	1
21	$log\frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$	1
	K_1 2.303 R $T1$ $T2$	
	$\begin{bmatrix} & 4 \times 10^{-2} & E_a & -1 & 1 & -1 \end{bmatrix}$	
	$\log \frac{4 \times 10^{-2}}{2 \times 10^{-2}} = \frac{E_a}{2.303 \times 8.314 J/K/mol} \left[\frac{1}{300} - \frac{1}{310}\right]$	
		1
	$log2 = \frac{E_a}{19.147J/mol} \qquad \left[\frac{10}{300x310}\right]$	1
	19.147 <i>J/mol</i> 5300 <i>x</i> 310 5	
	$\frac{1}{100}$ 0.3010 x 19.147 x 300 x 310	1
	$E_a = \frac{0.3010 \times 19.147 \times 300 \times 310}{10}$	1
	$E_a = 53598 J/mol$ or $53.598 kJ/mol$	

22	(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles	1
	of dispersion medium.	1
	(ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.(iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate	1
	together to form species having size in the colloidal range.	1
23	i) Caring ,concerned, helping,empathy (any two)	1/2 1/2
	ii) By organizing competitions like slogan writing, poster making and talk in the morning assembly (any other correct answer)	1
	iii) Used to treat depression,. Iproniazid/phenelzine (any other correct example)	1/2 1/2
	iv) Saccharin/ sucralose/aspartame/alitame (any other correct example)	1
24	Mg Mg ²⁺ (0.001) Cu ²⁺ (0.0001M) Cu	
	$E_{\text{Cell}}^{0} = E_{\text{R}}^{0} - E_{\text{L}}^{0}$	
	=[0.34-(-2.37)]V	
	=2.71V	
	$E_{\text{cell}} = E_{\text{Cell}}^{\text{O}} - \frac{0.059}{n} V \log \frac{[Mg2+]}{[Cu2+]}$	1
	$=2.71 \text{V} - \frac{0.059}{2} \text{V} \log 10^{-3}/10^{-4}$	1
	=2.71-0.0295 V log 10	
	=2.71-0.0295	
	=2.6805 V	1
	$\Delta G = -nFE_{cell}$	
	$= -2x96500 \text{ C mol}^{-1} \text{ x } 2.68 \text{ V}$	1/2
	$= -517240 \text{ Jmol}^{-1}$	1/2
	= -517.240 kJ/mol	1
	OR	
24	a) $M=0.20M$ $K=2.48X10^{-2}S/cm$	
	$\Lambda_m = \frac{K}{M} \times 1000 \text{ Scm}^2/\text{mol}$	
	PA	1/2
	$\Lambda_m = \frac{2.48 \times 10^{-2}}{0.20} \times 1000 \text{ Scm}^2/\text{mol}$	
	$= 124 \text{Scm}^2/\text{mol}$	1
	Λ_m	
	$lpha = rac{\Lambda_m}{{\Lambda_m}^0}$	1/2
	$\wedge_m{}^0 = \lambda^0 K^+ + \lambda C l^-$	
		1

		=73.5+76.5	
		= 150.5	
		$\alpha = \frac{124}{150} = 0.82$ Or 82%	1
		b) Primary battery or cell, potential remains constant throughout its life.	1,1
,	25	a)	
		i) Due to lanthanoid contraction.ii) Due to incomplete filling of d- orbitals / comparable energies of (n-1)d & ns	1
		electrons. iii)Because it undergoes disproportionation reaction in aqueous solution/oxidation	1
		of a metal in a solvent depends on the nature of the solvent. Cu ⁺ is unstable in water thats why it undergoes oxidation.	1
		b)	
		i) $2MnO_{\underline{2}} + 4KOH + O_{\underline{2}} \rightarrow 2K_{\underline{2}}MnO_{\underline{4}} + 2H_{\underline{2}}O$	
		ii) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$	1
		OR	1
25	25	 (i) Because of high ΔaH° & low Δ_{hyd} H°. (ii)Because of more stability of Mn²+ (3d⁵) (iii)Cr²+ ,because in +3 oxidation state Cr is more stable (t³₂g orbital) 	1 1 1 1/2, 1/2
		b) Due to comparable energies of 5f,6d,7s orbitals. Both show contraction in size/ both show main oxidation state +3/both are electro positive and very reactive/ both exhibit magnetic and spectral properties. (any one)	1

26	OH L	
	a) CH ₃ CO Cl CH ₃ CHO CH ₃ CH- CH ₂ - CHO CH ₃ CH= CH- CHO (A) (B) (C) (D)	1/2 ,1/2
	b) i)On adding Tollen's reagent C_6H_5CHO forms silver mirror whereas $C_6H_5COCH_3$ does not.	1/2, 1/2
	ii)On adding NaHCO ₃ solution benzoic acid gives brisk effervescence but methyl benzoate does not.	1 1
	c) CH ₃ CH ₂ - CH- CHO	1
	CH_3	
26	OR	
26	a)i) CH ₃ CH ₂ CH ₃	1
	ii) CH ₃ – C=N-NHCONH ₂	1
	$_{ m CH_3}^{ m I}$	
	CH ₃	1
	iii)CH ₃ — Ċ –OH	
	CH ₃ b) CH₃CHO < CH₃CH₂OH < CH₃COOH	1
	c)On adding Tollen's reagent CH ₃ CH ₂ CHO forms silver mirror whereas CH ₃ CH ₂ COCH ₃ does not (or any other distinguishing test).	1