
# CHEMISTRY MARKING SCHEME 2015 PATNA SET -56/3/P

| Qu<br>es. | Answers                                                                                                                                                                                        | Marks    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1         | 2-Methyl prop-2-en-1-ol                                                                                                                                                                        | 1        |
| 2         | Because of no unpaired electron in <b>Zn</b> <sup>2+</sup> Copper salts are coloured due to the presence of unpaired electrons in <b>Cu</b> <sup>2+</sup>                                      | 1/2 +1/2 |
| 3         | (CH <sub>3</sub> ) <sub>3</sub> C-Br                                                                                                                                                           | 1        |
| 4         | 2F or 2x 96500C                                                                                                                                                                                | 1        |
| 5         | Dispersed phase-liquid Dispersion medium- solid                                                                                                                                                | 1/2 +1/2 |
| 6         | Dichloridobis-(ethane-1,2-diamine)platinum(IV) Geometrical or optical isomerism                                                                                                                | 1        |
|           | OR                                                                                                                                                                                             | 1        |
| 6         | (i)[ $Co(NH_3)_6$ ] $Cl_3$<br>(ii) $K_2$ [ $NiCl_4$ ]                                                                                                                                          | 1 1      |
| 7         | (i) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$                                                                                                                                               | 1        |
|           | (ii) $ \begin{array}{ccccc} NH_2 & NH_2 & NH_2 \\ & & & & & \\ NO_2 & & & & & \\ \end{array} $ $ \begin{array}{ccccc} CH_3 \end{array} $                                                       | 1        |
| 8         | Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher | 1        |
|           | Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$                                                                                                            | 1        |
| 9         | (i) F Xe F                                                                                                                                                                                     | 1,1      |
| 10        | Decrease in concentration of reactant or increase in concentration of product per unit time                                                                                                    | 1        |
|           | Factors: 1)concentration of reactant2)catalyst 3) temperature 4)Nature of reactant 5)pressure 6)surface area (any two)                                                                         | 1/2 +1/2 |

| 11  |                                                                                                                                                                                     | 1 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | $CH_3 - CH_2 - C - CH_3$                                                                                                                                                            | 1 |
|     | $CH_3 - CH_2 - C - CH_3$                                                                                                                                                            |   |
|     | i) CH <sub>3</sub>                                                                                                                                                                  |   |
|     |                                                                                                                                                                                     |   |
|     | $CH_3 - CH_2 - CH = CH - CH_3$                                                                                                                                                      | 1 |
|     | 11)                                                                                                                                                                                 |   |
|     |                                                                                                                                                                                     |   |
|     | $\mathbf{Br}$                                                                                                                                                                       |   |
|     |                                                                                                                                                                                     |   |
|     |                                                                                                                                                                                     |   |
|     |                                                                                                                                                                                     | 1 |
|     | , CH <sub>3</sub>                                                                                                                                                                   |   |
| 10  | iii)                                                                                                                                                                                | 1 |
| 12  | (i)Because phenoxide ion is more stable than CH <sub>3</sub> CH <sub>2</sub> O ion / due to resonance in phenol,                                                                    | 1 |
|     | oxygen acquires positive charge and releases H <sup>+</sup> ion easily whereas there is no resonance in                                                                             |   |
|     | CH <sub>3</sub> CH <sub>2</sub> OH (ii)Because of hydrogen bonding in ethanol                                                                                                       |   |
|     | (ii) Declare of injurogen contains in entainer                                                                                                                                      | 1 |
|     | (iii)Because it follows $SN_1$ path way which results in the formation of stable $(CH_3)_3C^+$ .                                                                                    | 1 |
| 13  |                                                                                                                                                                                     |   |
|     | $\Delta_{\rm f}^{\rm T} = K_{\rm f} m$                                                                                                                                              | 1 |
|     | $T_f^0 - T_f = K_f W_B \times 1000 \frac{M_B \times W_A}{M_B \times W_A}$                                                                                                           |   |
|     | $M_B \times W_A$                                                                                                                                                                    |   |
|     | 273K - $T_f$ = 1.86K kg mol <sup>-1</sup> x $\frac{31g}{62gmol^{-1}}$ x $\frac{1000}{500kg}$                                                                                        | 1 |
|     | $62gmol^{-1} \qquad 500kg$                                                                                                                                                          |   |
|     | $T_f = (273-1.86) \text{ K}$                                                                                                                                                        |   |
|     |                                                                                                                                                                                     | 1 |
| 1 / | T <sub>f</sub> = 271.14K Or -1.86 <sup>0</sup> C                                                                                                                                    | 1 |
| 14  | <ul><li>(i)Unit cells having constituent particles at the corner positions.</li><li>(ii) The defect occurs due to missing of equal no of cations and anions in a lattice.</li></ul> | 1 |
|     | (iii) The permanent magnetism which arises when magnetic moments of substance are aligned in                                                                                        | 1 |
|     | same direction.                                                                                                                                                                     | 1 |
| 15  | $\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right]$                                                                                            | 1 |
|     |                                                                                                                                                                                     |   |
|     | $\log \frac{4 \times 10^{-2}}{2 \times 10^{-2}} = \frac{E_a}{2.303 \times 8.314 J/K/mol} \left[ \frac{1}{300} - \frac{1}{310} \right]$                                              |   |
|     | 2 x 10 2.303 x 0.314)/K/III01 300 310                                                                                                                                               |   |
|     | E 10                                                                                                                                                                                | 1 |
|     | $log2 = \frac{E_a}{19.147J/mol} \left[ \frac{10}{300x310} \right]$                                                                                                                  | 1 |
|     |                                                                                                                                                                                     |   |
|     | $E_a = \frac{0.3010 \times 19.147 \times 300 \times 310}{10}$                                                                                                                       | 1 |
|     | $E_a = 53598  J/mol$ or $53.598  kJ  /mol$                                                                                                                                          |   |

| 16 | $(i)[CoF_6]^{3-}$ sp <sup>3</sup> d <sup>2</sup> octahedral                                                                                             | 1/2 1/2 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|    | (ii) $[Ni(CN)_4]^{2-}$ dsp <sup>2</sup> square planar                                                                                                   | 1/2 1/2 |
|    | (b) CO, because of synergic /back bonding with metal                                                                                                    | 1/2 1/2 |
| 17 | (i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles of dispersion medium.                                  | 1       |
|    | (ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.                                                         | 1       |
|    | (iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range. | 1       |
| 18 | (i)Greater solubility of impurities in molten state.                                                                                                    | 1       |
|    | (ii)Silica reacts with impurity FeO to form slag (FeSiO <sub>3</sub> ) / acts as a flux to remove impurities.                                           | 1       |
|    | (iii)Cast iron is harder than pigiron / has lesser content of carbon.                                                                                   | 1       |
| 19 | i)Buna –S Butadiene Styrene $CH_2=CH-CH=CH_2$ $C_6H_5CH=CH_2$ .                                                                                         | 1/2     |
|    | ii)Glyptal Ethylene Glycol Pthalic acid                                                                                                                 | 1/2     |
|    | COOH                                                                                                                                                    | 1/2     |
|    | СООН                                                                                                                                                    | 1/2     |
|    |                                                                                                                                                         |         |
|    | HO−CH₂CH₂−OH                                                                                                                                            |         |
|    | iii)Polyvinyl chloride Vinyl Chloride <b>CH₂=CH-Cl</b>                                                                                                  | 1/ 1/   |
|    | (Note: half mark for name/s and half mark for structure/s)                                                                                              | 1/2 1/2 |
| 20 | CH=N—OH                                                                                                                                                 |         |
|    |                                                                                                                                                         | 1       |
|    | (CHOH) <sub>4</sub>                                                                                                                                     |         |
|    | i) CH <sub>2</sub> OH                                                                                                                                   |         |
|    |                                                                                                                                                         |         |
|    |                                                                                                                                                         |         |
|    | R-CH-C-O  (ii)Because of zwitter ion nature of amino acid /                                                                                             | 1       |
|    | (ii)Because of zwitter ion nature of amino acid / *NH <sub>3</sub>                                                                                      | 1       |
|    | (iii)Because vitamin C is soluble in water.                                                                                                             | 1       |
|    |                                                                                                                                                         |         |



| 24 |                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    | <ul> <li>a)</li> <li>i) Due to lanthanoid contraction.</li> <li>ii) Due to incomplete filling of d- orbitals/ comparable energies of (n-1)d &amp; ns electrons.</li> <li>iii)Because it undergoes disproportionation reaction in aqueous solution/ oxidation of a metal in a solvent depends on the nature of the solvent. Cu<sup>+</sup> is unstable in water thats why it undergoes oxidation.</li> </ul> | 1 1 1                |
|    | b) i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ ii) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$                                                                                                                                                                                                                                                                                    | 1 1                  |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| 24 | <ul> <li>(i) Because of high ΔaH°&amp;low Δ<sub>hyd</sub> H°.</li> <li>(ii)Because of more stability of Mn<sup>2+</sup> (3d<sup>5</sup>)</li> <li>(iii)Cr<sup>2+</sup> ,because in +3 oxidation state Cr is more stable (t<sup>3</sup><sub>2g</sub>orbital)</li> </ul>                                                                                                                                      | 1<br>1<br>½,½        |
|    | b) Due to comparable energies of 5f,6d,7s orbitals.  Both show contraction in size/ both show main oxidation state +3/both are electro positive and very reactive/ both exhibit magnetic and spectral properties. (any one)                                                                                                                                                                                 | 1                    |
| 25 | ОН                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|    | a) CH <sub>3</sub> CO Cl CH <sub>3</sub> CHO CH <sub>3</sub> CH- CH <sub>2</sub> - CHO CH <sub>3</sub> CH= CH- CHO (A) (B) (C) (D)                                                                                                                                                                                                                                                                          | 1/2 ,1/2<br>1/2, 1/2 |
|    | b) i)On adding Tollen's reagent $C_6H_5CHO$ forms silver mirror whereas $C_6H_5COCH_3does$ not.                                                                                                                                                                                                                                                                                                             | 1                    |
|    | ii)On adding NaHCO <sub>3</sub> solution benzoic acid gives brisk effervescence but methyl benzoate does not.                                                                                                                                                                                                                                                                                               | 1                    |
|    | c) CH <sub>3</sub> CH <sub>2</sub> - CH- CHO CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                | 1                    |
| 25 | OR                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|    | a)i) CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                        | 1                    |
|    | ii) CH <sub>3</sub> –C=N-NHCONH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                |                      |

|    |                                                                                                                                                                                             | 1 . 1 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | $_{ m CH_3}$                                                                                                                                                                                | 1     |
|    | $\mathrm{CH}_3$                                                                                                                                                                             |       |
|    | <br>iii)CH <sub>3</sub> — C –OH                                                                                                                                                             | 1     |
|    |                                                                                                                                                                                             |       |
|    | CH <sub>3</sub> b) CH <sub>3</sub> CHO< CH <sub>3</sub> CH <sub>2</sub> OH< CH <sub>3</sub> COOH                                                                                            | 1     |
|    |                                                                                                                                                                                             |       |
|    | c)On adding Tollen's reagent CH <sub>3</sub> CH <sub>2</sub> CHO forms silver mirror whereas CH <sub>3</sub> CH <sub>2</sub> COCH <sub>3</sub> does not (or any other distinguishing test). | 1     |
| 26 | Mg   Mg <sup>2+</sup> ( <b>0.001</b> )   Cu <sup>2+</sup> ( <b>0.0001M</b> )   Cu                                                                                                           |       |
|    | $E^0_{Cell} = E^0_{R} - E^0_{L}$                                                                                                                                                            |       |
|    | =[0.34-(-2.37)]V                                                                                                                                                                            |       |
|    | =2.71V                                                                                                                                                                                      |       |
|    | $E_{\text{cell}} = E_{\text{Cell}}^{\text{o}} - \frac{0.059}{n} V \log \frac{[Mg2+]}{[Cu2+]}$                                                                                               | 1     |
|    | $=2.71V - \frac{0.059}{2}V \log 10^{-3}/10^{-4}$                                                                                                                                            | 1     |
|    | =2.71-0.0295 V log 10                                                                                                                                                                       | 1     |
|    | =2.71-0.0295                                                                                                                                                                                |       |
|    | =2.6805 V                                                                                                                                                                                   | 1     |
|    |                                                                                                                                                                                             |       |
|    | $\Delta G = -nFE_{cell}$<br>= -2x96500 C mol <sup>-1</sup> x2.68 V                                                                                                                          | 1/2   |
|    | $= -517240 \text{Jmol}^{-1}$                                                                                                                                                                | 1/2   |
|    | = -517.240 kJ/mol                                                                                                                                                                           | 1     |
|    | OR                                                                                                                                                                                          | 1     |
|    |                                                                                                                                                                                             |       |
| 26 | a) $M=0.20M$ $K=2.48X10^{-2}S/cm$                                                                                                                                                           |       |
| 26 | $\Lambda_m = \frac{K}{M} \times 1000 \text{ Scm}^2/\text{mol}$                                                                                                                              |       |
|    | $\Lambda_m = \frac{2.48 \times 10^{-2}}{0.20} \times 1000 \text{ Scm}^2/\text{mol}$                                                                                                         | 1/2   |
|    | $= 124  \text{Scm}^2/\text{mol}$                                                                                                                                                            | 1     |
|    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                         | 1     |
|    | $\alpha = \frac{\Lambda_m}{\Lambda_m}$                                                                                                                                                      |       |
|    | $\alpha = \frac{\Lambda_m}{\Lambda_m^{\ 0}}$                                                                                                                                                | 1/2   |

| $\Lambda_m^0 = \lambda^0 K^+ + \lambda C l^-$                            |     |
|--------------------------------------------------------------------------|-----|
| =73.5+76.5                                                               |     |
| = 150                                                                    |     |
| $\alpha = \frac{124}{150} = 0.82$ Or 82%                                 | 1   |
| Primary battery or cell, potential remains constant throughout its life. | 1,1 |