Chemistry-Marking Scheme 2015

Chennai- 56/2/MT

$\begin{gathered} \text { Q.N } \\ \mathrm{o} \end{gathered}$	Value points	Marks
1	$\mathrm{CH}_{3}-\mathrm{CH}_{2}$-Br.	1
2	1-methoxypropan-2-ol.	1
3	Dispersed phase - Solid, Dispersion medium - Liquid.	1
4	Due to incompletely filled d-orbitals in +2 oxidation state (ie., in Cu^{2+} state.)	1
5	3 Faraday / 3F	1
6	As per Raoult's law	2
7	$\begin{array}{ll}\text { (i) } & \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}-\mathrm{CH}_{3}<\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2} . \\ \text { (ii) } & \mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3}<\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}<\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH} .\end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
8 8	Pentaamminecarbonatocobalt(III) chloride. Ionization isomerism OR (i) $\left[\mathrm{CuCl}_{4}\right]^{2-}$ (ii) $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$	$\begin{gathered} 1 \\ 1 \\ 1,1 \end{gathered}$
9	Rate constant is the proportionality constant that relates rate of reaction with concentration of reactants / Rate of the reaction when molar concentration of the reactant becomes unity. (i) Unit: time $^{-1}$ or s^{-1}. (ii) Unit: $\mathrm{L} \mathrm{mol}^{-1}$ time ${ }^{-1}$ or $\mathrm{M}^{-1} \mathrm{~s}^{-1}$.	$\begin{gathered} 1 \\ \\ 1 / 2 \\ 1 / 2 \end{gathered}$
10	 i) (ii)	1,1
11	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}\left(\mathrm{~W}_{\mathrm{B}} \times 1000 / \mathrm{M}_{\mathrm{B}} \times \mathrm{W}_{\mathrm{A}}\right) \\ & 353.93-353.23=2.52 \times 1.5 \times 1000 / \mathrm{M}_{\mathrm{B}} \times 90 \\ & \mathrm{M}_{\mathrm{B}}=(2.52 \times 1.5 \times 1000) /(0.7 \times 90) \\ & \quad=60.0 \mathrm{~g} \mathrm{~mol}^{-1} . \end{aligned}$	1 1 1

12	(i) Because of $\mathrm{p} \pi-\mathrm{p} \pi$ multiple bonding in nitrogen (diatomic) which is absent in phosphorus (polymeric / polyatomic). (ii) Because of decrease in tendency of sp^{3} hybridisation from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{Te}$. (iii) Due to their smallest atomic sizes in respective periods, or due to the fact that they have only one electron less than the next noble gas configuration.	1 1
13	(i) $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ (ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ (iii) $\mathrm{p}-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}-\mathrm{CH}_{3}$	
14	(i) But-1,3-diene, Acrylonitrile; $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ (ii) Phenol, Formaldehyde; $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{HCHO}$ (iii) Tetrafluoroethylene; $\quad \mathrm{CF}_{2}=\mathrm{CF}_{2}$ (Note: half mark for name/s and half mark for structure/s)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
15	(i) Gluconic acid or $\mathrm{COOH}-(\mathrm{CHOH})_{4}-\mathrm{CH}_{2} \mathrm{OH}$ (ii) Peptide linkage or -NH-CO- links (iii)	
16	(a)(i) $\mathrm{d}^{2} \mathrm{sp}^{3} ; \quad$ Octahedral (ii) sp^{3}; Tetrahedral (b)'en' , forms chelate .	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
17	(i) Anion vacancies occupied by free electrons in alkali metal halides, (when they have metal excess defects) are called F-centre. (ii) When Si or Ge is doped with a trivalent impurity then electron vacancies are created called positive holes which impart electrical conduction. They are called p-type semiconductors. (iii) Ferrimagnetism is observed when the magnetic moments are aligned in parallel and antiparallel way in unequal numbers in a substance leading to small net permanent magnetic moment.	1 1 1
18	$\begin{aligned} & \log \left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=\left(\mathrm{E}_{\mathrm{a}} / 2.303 \mathrm{R}\right)\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / \mathrm{T}_{1} \mathrm{~T}_{2} \\ & \log \left[\left(8 \times 10^{-2}\right) /\left(2 \times 10^{-2}\right)\right]=20 \mathrm{E}_{\mathrm{a}} / 2.303 \times 8.314 \times 300 \times 320 \\ & \mathrm{E}_{\mathrm{a}}=[\log (4) \times 2.303 \times 8.314 \times 300 \times 320] / 20 \\ & \mathrm{E}_{\mathrm{a}}=55336.8 \mathrm{~J} \mathrm{~mol}^{-1}=55.34 \mathrm{~kJ} \mathrm{~mol}^{-1} . \end{aligned}$	1 1 1
19	(i) Due to intramolecular H-bonding in o-nitrophenol /	1

	p-nitrophenoxide is more stabilized than o-nitrophenoxide due to more delocalization of the negative charge. (ii) The mutual repulsion between bulky alkyl groups is stronger than the 1.p-l.p electronic repulsions. (iii) $\mathrm{CH}_{3} \mathrm{ONa}$ is not only nucleophile but also stronger base, thereby leads to elimination reaction of the alkyl halide.	1 1
20	(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2}+\mathrm{HCl} / 278 \mathrm{~K}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}^{\mathrm{H}_{3} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{6}$ (ii) $\mathrm{CH}_{3}-\mathrm{CONH}_{2} \xrightarrow{\mathrm{KOH}+\mathrm{Br}_{2}} \mathrm{CH}_{3} \mathrm{NH}_{2}$ (iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \xrightarrow{\mathrm{Sn}+\mathrm{HCl} \text { or } \mathrm{Fe}+\mathrm{HCl}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ OR (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCl}^{\text {pyridine }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NHCOCH}_{3}+\mathrm{HCl}$ (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}-\mathrm{O}_{2} \mathrm{SC}_{6} \mathrm{H}_{5}+\mathrm{HCl}$ (iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+\mathrm{KOH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$	1 1 1 1 1 1
21	(i) In a catalysis process when the reactants and catalyst occur in same phase , the process is called homogeneous catalysis. (ii) The process of settling of colloidal particles forming precipitate is called coagulation. (iii) Polymeric substances or macromolecules when added to suitable solvents form solutions in which the size of the macromolecules may be in colloidal range. Such colloids are known as macromolecular colloids.	1 1 1
22	(i) The principle of zone refining is that the impurities are more soluble in the melt of metal than in solid state of the metal. (ii) As leaching agent, thereby oxidizing the metal into soluble cyanocomplex / $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$. (iii) Wrought iron	1 1 1
23	(i) Social awareness ,Health conscious, Caring , empathy, concern .(or any other two values) (ii) (ii) Cartoon display / street display/poster making (or any other correct answer) (iii) Wrong choice and over dose may be harmful. (iv) Saccharin , Aspartame (or any other example)	1 1 1 $1 / 2+1 / 2$
24	(a) (i) Ce^{4+} gets reverted to $3+$ oxidation state in aqueous medium hence is a good oxidizing agent $/ \mathrm{Ce}$ is more stable in +3 oxidation state.	1

24	(ii) Due to very strong metal-metal bonding (involving large no. of electrons of the d-orbitals) (iii) Mn has maximum no. of unpaired electrons in 3d-orbitals. (b)(i) $\begin{aligned} & \text { (i) } 2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{NO}_{2}^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\ & \text { (ii) } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ OR (a) (i) Due to d-d transitions (involving absorption of energy in visible range) / unpaired electrons in d- orbitals. (ii) Because Cr is more stable in +3 oxidation state. (iii) Due to stability of $5 f^{0}, 5 f^{7}, 5 f^{14} /$ very small energy difference / comparable energy among 5f, 6d, and 7 s orbitals. (b) The overall decrease in atomic and ionic radii from La to Lu (due to poor shielding effect of 4 f electrons) is called Lanthanoid contraction. Common oxidation state of Lanthanoids is +3 .	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$
25 25	(a) A is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} ; \quad \mathrm{B} \& \mathrm{C} / \mathrm{C} \& \mathrm{~B}$ are $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH} \& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ D is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ (b) (i) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{3}$ forms yellow coloured CHI_{3} on heating with $\mathrm{I}_{2}+\mathrm{KOH}$ but $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ does not / equation form. (ii) With neutral FeCl_{3}, phenol gives violet coloration but benzoic acid does not. (any other suitable test). (c) OR (a) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ (ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{NH}_{2}$ (iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (b) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{3}<\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}<\mathrm{CH}_{3}-\mathrm{CHO}$ (c) $\mathrm{CH}_{3} \mathrm{CHO}$ gives yellow precipitate of CHI_{3} with $\mathrm{I}_{2}+\mathrm{KOH}$ but $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ does not/ equation form	$1 / 2 \times 4$ 1 1 1 1 1 1 1 1
26	$\begin{aligned} & \mathrm{E}_{\text {Cell }}=\left(\mathrm{E}_{\mathrm{Ag}}^{\mathrm{o}}-\mathrm{E}_{\mathrm{Ni}}^{\mathrm{o}}\right)-(0.0591 / \mathrm{n}) \log \left[\mathrm{Ni}^{2+} /\left(\mathrm{Ag}^{+}\right)^{2}\right] \\ &=(0.80+0.25)-0.02955 \log \left(10^{-2} / 10^{-6}\right) \\ &=1.05-0.0178=1.0322 \mathrm{~V} \\ & \Delta \mathrm{G}=-\mathrm{n} \mathrm{~F} \mathrm{E} \\ & \text { cell } \\ &=-2 \times 96500 \times 1.0322 \end{aligned}$	1 1 1 $1 / 2$ $1 / 2$

26	$=-199214 \mathrm{~J} \mathrm{~mol}^{-1}=-199.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1
	OR	
	(a) Molar Conductivity $\left(\Lambda_{m}\right)=1000 \mathrm{~K} / \mathrm{C}$	1/2
	$=\left(1000 \times 1.06 \times 10^{-2}\right) / 0.1$	1/2
	$=106 \mathrm{~S} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$.	1
	Deg. of dissociation (α) $=\Lambda_{\mathrm{m}} / \Lambda_{\text {m }}^{0}$	1/2
	$=106 /(50.1+76.5)$	
	$=0.8373$	$\begin{gathered} 1 / 2 \\ 1 / 2,1 / 2 \end{gathered}$
	chargeable. Eg: primary battery-dry cell, mercury cell(any one), secondary battery- lead storage battery, Ni-Cd battery(any one) (or any other correct example)	$1 / 2,1 / 2$

