Chemistry-Marking Scheme 2015

Chennai- 56/2/MT

Q.N	Value points	Marks
О	•	
1	CH ₃ -CH ₂ -Br.	1
2	1-methoxypropan-2-ol.	1
3	Dispersed phase – Solid, Dispersion medium – Liquid.	1
4	Due to incompletely filled d-orbitals in +2 oxidation state (ie., in	1
	Cu ²⁺ state.)	
5	3 Faraday / 3F	1
6	As per Raoult's law $p_A = x_A p_A^o$	
	$P_{A} = p_{A}^{o}(1 - x_{B}) = p_{A}^{o} - p_{A}^{o}x_{B}$	
	$(p_{A}^{o} - p_{A}) / p_{A}^{o} = x_{B}$	
	$\Delta p / p_A^o = x_B = W_B M_A / M_B W_A$	
	W _B M _A	
	M _B =	2
	$(\Delta p / p_A^o) W_A$	
7	(i) C_6H_5 -NH ₂ $< C_6H_5$ -NH-CH ₃ $< CH_3$ -CH ₂ -NH ₂ .	1
	(ii) CH_3 -NH- CH_3 < CH_3 -CH ₂ -NH ₂ < C_2H_5 -OH.	1
8	Pentaamminecarbonatocobalt(III) chloride.	1
	Ionization isomerism	1
	OR	
8	(i) $[CuCl_4]^{2-}$ (ii) $K_2[Zn(OH)_4]$	1,1
9	Rate constant is the proportionality constant that relates rate of	
	reaction with concentration of reactants / Rate of the reaction when	1
	molar concentration of the reactant becomes unity.	
	(i) Unit: time ⁻¹ or s ⁻¹ .	
	(i) Unit: time ⁻¹ or s ⁻¹ .	1/2
	(ii) Unit: $L \text{ mol}^{-1} \text{ time}^{-1} \text{ or } M^{-1} \text{ s}^{-1}$.	1/2
10		
	S Xe	
		1.1
	ОН НО	1,1
	i) (ii)	
11	$\Delta T_b = K_b m$	
	$\Delta T_b = K_b (W_B \times 1000 / M_B \times W_A)$	1
	353.93-353.23= 2.52 x 1.5 x1000 / M _B x 90	1
	$M_B = (2.52 \text{ x } 1.5 \text{ x } 1000) / (0.7 \text{ x } 90)$	•
	$= 60.0 \text{ g mol}^{-1}.$	1
	– 00.0 g iii0i .	1
		l

Downloaded From: http://www.cbseportal.com

12	(i) Because of $p\pi$ - $p\pi$ multiple bonding in nitrogen (diatomic) which is absent in phosphorus (polymeric / polyatomic).	1
	(ii) Because of decrease in tendency of ${\rm sp}^3$ hybridisation from ${\rm H}_2{\rm O}$ to ${\rm H}_2{\rm Te}$.	1
	(iii) Due to their smallest atomic sizes in respective periods, or due to the fact that they have only one electron less than the next noble gas	1
13	configuration.	
13	(i) CH ₃ - CH(OH)-CH ₃	1
	(ii) CH ₃ -CH=CH-CH ₃	1
	(iii) p-Br-C ₆ H ₄ -CO-CH ₃	1
14	(i) But-1,3-diene, Acrylonitrile; CH ₂ =CH-CH=CH ₂ , CH ₂ =CH-CN	1/2 + 1/2
	(ii) Phenol, Formaldehyde; C ₆ H ₅ OH, HCHO	1/2 + 1/2
	(iii) Tetrafluoroethylene; CF ₂ =CF ₂	$\frac{1}{2} + \frac{1}{2}$
	(Note: half mark for name/s and half mark for structure/s)	
15	(i) Gluconic acid or COOH-(CHOH) ₄ -CH ₂ OH	1
	(ii) Peptide linkage or -NH-CO- links	1
	(iii)	
	s.no DNA RNA	1
	1Sugar is 2-deoxy riboseSugar is ribose2Double helical structureSingle stranded structure	
	(or any other one correct difference)	
16	(a)(i) d ² sp ³ ; Octahedral	1/2 + 1/2
	(ii) sp ³ ; Tetrahedral	1/2 + 1/2
	(b)'en', forms chelate.	$\frac{1}{2} + \frac{1}{2}$
17	(i) Anion vacancies occupied by free electrons in alkali metal halides, (when they have metal excess defects) are called F-centre.	1
	(ii) When Si or Ge is doped with a trivalent impurity then electron vacancies are created called positive holes which impart electrical conduction. They are called p-type semiconductors.	1
	(iii) Ferrimagnetism is observed when the magnetic moments are aligned in parallel and antiparallel way in unequal numbers in a substance leading to small net permanent magnetic moment.	1
18	$\log (k_2/k_1) = (E_a/2.303R) (T_2-T_1)/T_1T_2$	1
	$\log \left[(8x10^{-2})/(2x10^{-2}) \right] = 20 E_a / 2.303x8.314x300x320$	1
	$E_a = [log(4)x2.303x8.314x300x320] / 20$	
	$E_a = 55336.8 \text{J mol}^{-1} = 55.34 \text{ kJ mol}^{-1}.$	1
19	(i) Due to intramolecular H-bonding in o-nitrophenol /	1
	<u>I</u>	=

Downloaded From: http://www.cbseportal.com

	p-nitrophenoxide is more stabilized than o-nitrophenoxide due to more delocalization of the negative charge.	
	(ii) The mutual repulsion between bulky alkyl groups is stronger than the l.p-l.p electronic repulsions.	1
	(iii) CH ₃ ONa is not only nucleophile but also stronger base, thereby leads to elimination reaction of the alkyl halide.	1
20	(i) $C_6H_5NH_2$ NaNO ₂ + HC1 / 278K $C_6H_5N_2C1$ $H_3PO_2+H_2O$ C_6H_6	1
	(ii) CH_3 - $CONH_2$ $KOH + Br_2$ CH_3NH_2	1
	(iii) $C_6H_5NO_2$ Sn+HCl or Fe+HCl \longrightarrow $C_6H_5NH_2$	1
	OR	_
	(i) $C_2H_5NH_2 + CH_3COCl$ <u>pyridine</u> C_2H_5 -NHCOCH ₃ + HCl	1
	(ii) $C_2H_5NH_2 + C_6H_5SO_2C1 \longrightarrow C_2H_5NH - O_2SC_6H_5 + HCl$	1
	(iii) $C_2H_5NH_2 + CHCl_3 + KOH \longrightarrow C_2H_5NC + KCl + H_2O$	1
21	(i) In a catalysis process when the reactants and catalyst occur in same phase, the process is called homogeneous catalysis.	1
	(ii) The process of settling of colloidal particles forming precipitate is called coagulation.	1
	(iii) Polymeric substances or macromolecules when added to suitable solvents form solutions in which the size of the macromolecules may be in colloidal range. Such colloids are known as macromolecular colloids.	1
22	(i) The principle of zone refining is that the impurities are more soluble in the melt of metal than in solid state of the metal.	1
	(ii) As leaching agent, thereby oxidizing the metal into soluble cyanocomplex $/ [Au(CN)_2]^T$.	1
	(iii) Wrought iron	
23	(i) Social awareness ,Health conscious, Caring , empathy,	1
23	concern .(or any other two values)	_
	(ii) (ii) Cartoon display / street display/poster making (or any other correct answer)	1
	·	1
	(iii) Wrong choice and over dose may be harmful.	
	(iv) Saccharin , Aspartame (or any other example)	1/2 + 1/2
24	(a)	
	(i) Ce ⁴⁺ gets reverted to 3+ oxidation state in aqueous medium hence is a good oxidizing agent / Ce is more stable in +3 oxidation state.	1

	(ii) Due to very strong metal-metal bonding (involving large no. of electrons of the d-orbitals)	
24	(iii) Mn has maximum no. of unpaired electrons in 3d-orbitals.	1
	(b)(i) $2MnO_4^- + 6H^+ + 5NO_2^- \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	1
	(ii) $Cr_2O_7^{2-} + 14H^+ + 6 Fe^{2+} \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$	1
	OR	1
	(a) (i) Due to d-d transitions (involving absorption of energy in visible range) / unpaired electrons in d- orbitals.	1
	(ii) Because Cr is more stable in +3 oxidation state.	
	(iii) Due to stability of 5f ⁰ , 5f ⁷ , 5f ¹⁴ / very small energy difference / comparable energy among 5f, 6d, and 7s orbitals.	1
	(b) The overall decrease in atomic and ionic radii from La to Lu (due to poor shielding effect of 4f electrons) is called Lanthanoid	1
25	contraction. Common oxidation state of Lanthanoids is +3.	1+1
25	(a) A is C_6H_5CHO ; B & C/ C & B are $C_6H_5CH_2OH$ & C_6H_5COONa	½ x 4
	D is C ₆ H ₅ CH(OH)CH ₃	
	(b) (i) C ₆ H ₅ -CO-CH ₃ forms yellow coloured CHI ₃ on heating with I ₂ +KOH but C ₆ H ₅ -CO-CH ₂ -CH ₃ does not / equation form.	1
	(ii) With neutral FeCl ₃ , phenol gives violet coloration but benzoic acid does not. (any other suitable test).	1
	(c) CHO OH	1
	OR	
25	(a) (i) CH ₃ CH(OH)CN	1
23	(ii) CH ₃ CH=N-NH ₂	1
	(iii) CH ₃ CH ₂ OH	1
	(b) C_6H_5 -CO-CH ₃ $<$ CH ₃ -CO-CH ₃ $<$ CH ₃ -CHO	1
	(c) CH ₃ CHO gives yellow precipitate of CHI ₃ with I ₂ + KOH but CH ₃ CH ₂ CHO does not/ equation form	1
26	$E_{\text{Cell}} = (E_{\text{Ag}}^{\text{o}} - E_{\text{Ni}}^{\text{o}}) - (0.0591/\text{n}) \log[Ni^{2+}/(Ag^{+})^{2}]$	1
	$= (0.80 + 0.25) - 0.02955\log(10^{-2}/10^{-6})$	1
	= 1.05 - 0.0178 = 1.0322 V	1
	$\Delta G = -n F E_{cell}$	1/2
	= -2 x 96500 x 1.0322	72 1/2
<u> </u>		

Downloaded From: http://www.cbseportal.com

	$= -199214 \text{ J mol}^{-1} = -199.2 \text{ kJ mol}^{-1}$	1
	OR	
26	(a) Molar Conductivity (Λ_m) = 1000 K/C	1/2
	$= (1000 \times 1.06 \times 10^{-2}) / 0.1$	1/2
	$= 106 \text{ S cm}^{-2} \text{ mol}^{-1}.$	1
	Deg. of dissociation (α) = $\Lambda_{\rm m}/\Lambda_{\rm m}^0$	1/2
	= 106 / (50.1+76.5)	
	= 0.8373 (b) Primary battery- non rechargeable whereas secondary battery is chargeable. Eg: primary battery-dry cell, mercury cell(any one), secondary battery- lead storage battery, Ni-Cd battery(any one)	1/2 1/2 , 1/2 1/2 , 1/2
	(or any other correct example)	