Strictly Confi dential (For Internal and Restricted Lse on y) Seni or School Certificate Exa ni nation Marking Sche ne - Physics (Code 55/ 1/2)

1. The marking sche ne provides general guid delines to reduce subjectivity in the marking. The ans wers gi veni int he marking sche me are suggested ans wers. The cont ent ist hus i ndi cated. If a st udent has gi ven any other ans wer, which is different fromt he one given in the marking sche me, but conveys the meani ng correctly, such answers should be gi ven full wei ght age.
2. In val ue based questions, any ot her individual response with suitable justification should al so be accepted even if there is no reference to the text.
3. Eval uationis to be done as per instructions providedinthe marking sche me. It should not be done according to one' s own interpret ation or any ot her consideration. Marking sche me should be adhered to and reli gi ousl y foll owed.
4. If a question has parts, please a wardinthe right hand si de for each part. Marks a war ded for different part of the question should then be totaled up and written inthe left hand margin and circled
5. If a question does not have any parts, narks are to be awar ded inthe left hand margin onl y.
6. If a candi date has atte mpted an extra question, marks obt ai nedint he question atte mpted first shoul d be retai ned and the ot her ans wer shoul d be scored out.
7. No marks are to be deducted for the cu mul ati ve effect of an error. The st udent should be penalized onl y once.
8. Deduct $1 / 2$ mark for writing wrong units, missing units, inthe final ans wer to nu nerical problens.
9. For mul a can be taken as i mplied fromt he cal cul ations even if not explicitly written.
10. In short ans wer t ype question, asking for t wo feat ures/ characteristics/ properties if a candidate writes three feat ures, characteristics / properties or more, only the correct t wo shoul d be eval uated.
11. Full marks should be a warded to a candidateif his/ her ans wer in a nu merical problemis cl ose t ot he val ue gi ven int he sche me.
12. In compliance t ot he j udgement of the Hon' ble Supreme Court of India, Board has deci dedto provi de phot ocopy of the ans wer book(s) to the candidates who will apply for it al ong with the requisite fee from2012 exa mination Therefore, it is all the more important that the eval uationis done strictly as per the value points giveninthe marking sche me sothat the Board could be in a positionto defend the eval uation at any forum
13. The Exa nin ner shall al so have to certify int he ans wer book that they have evaluated the ans wer book strictlyin accordance withthe val ue points givenin the marking sche me and correct set of question paper.
14. Every Exa miner shall al so ensure that all the ans wers are eval uated marks carried over to the title paper, correctly totaled and witten in figures and words.
15. Inthe past it has been observed that the following are the common types of errors committed by t he Exa niners

- Leavi ng ans wer or part thereof unassessed in an ans wer script.
- G ving more marks for an ans wer than assi gned toit α deviation fromt he narking sche ne.
- We ong transference of marks fromthe insi de pages of the ans wer book tot he title page.
- Wi ong question wise totaling on the title page.
- Wr ong totaling of narks of the t wo col ums on the title page.
- We ong grand total.
- Marks in words and figures not tallying.
- We ong transference to marks fromt he ans wer book to a ward list.
- Ans wer marked as correct () but marks not a warded
- Half or part of ans wer marked correct () and the rest as wrong () but no marks a warded

16. Any unassessed portion, non carrying over of marks tot he title page or totaling error detected by t he candidate shall da mage the prestige of all the personnel engaged inthe eval uation work as al so of the Board. Hnce in or der to uphol dthe prestige of all concer ned, it is agai n reiteratedt hat the instructions be followed meticul ously and judici ously.
Del hi set II
H NAL print Daft
Page No. 1
11 th March 201311 am

MARKI NG SCHE ME
SET 55/1/2 (DELHI)

Q No.	Expected Ans wer/ Val ue Points	Marks	Total Marks
1.	$\mathrm{V}=\mathrm{E}-\mathrm{Ir}$	1	1
2.	Bi and Cu	$1 / 2+1 / 2$	1
3.	$\mathrm{I}=\frac{P}{V}=\frac{630}{210}=3 \mathrm{~A}$	1	1
4.	Magnitude of conduction \& displace ment currents are zero	1	1
5.	$(1,3)$ and (2,4$)$	$1 / 2+1 / 2$	1
6.	Heat waves, as they are trans verse/ el ectromagnetic in nat ure	1	1
7.	$A+\delta_{m}=2 i$	1	1
8.	Spherical .	1	1
9.	Identifi cati on of X and Y $1 / 2+1 / 2$ Function of Xand Y $1 / 2+1 / 2$ X : IF stage Y: Amplifier The carrier frequency is changed to a lower frequency by inter nediate frequency (IF) stage precedi ng the detection It increases the strengt h of detected si gnal	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
10.	(i) Val ue of Shunt Resist ance 1 (ii) Combi ned resistance 1 (i) Shunt $S=\frac{R_{A} i_{g}}{i-i_{g}}$ $=\frac{1 \times 1}{5-1}=0.25 \Omega$ (ii) Total Resistance $\begin{aligned} & \frac{1}{R_{\text {Total }}}=\frac{1}{0.25}+\frac{1}{1}=\mathbf{5} \\ & \mathrm{R}_{\text {Total }}=\frac{1}{5} \Omega=0.2 \Omega \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$	2

Del hi set II
H NAL print Daft
Page No. 2
11 th March 201311 am

11.	Conditi ons $1 / 2+1 / 2$ Rel ati on 1 (a) i) Ray of light shoul d travel fromdenser torarer medi um ii) Angle of inci dence shoul d be more than the critical angle. (b) $\mu=\frac{1}{\sin i_{c}}$ where i_{c} is the critical angle	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$	2
12.	St ate ment of lenz law 1 Enf and justification $1 / 2+1 / 2$ The pol arity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it. Yes, as the magnetic flux due to vertical component of Earth's magnetic keeps on changing as the netallicrod falls down.	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \end{aligned}$	2
13.	(i) Effect on Bri ght ness of the bul b and reason $1 / 2+1 / 2$ (ii) Effect on volt neter reading and reason $1 / 2+1 / 2$ (i) Decreases When resistance Ris increased, base current i_{b} will decrease hence collect or current will decrease. Bright ness of the bul b will decrease. (ii) Decreases As volt neter is connected across the bul b, therefore its readi ng will also decrease.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
14.	Det er ni nati on of po wer Nat ure $11 / 2$ $1 / 2$ Po wer of convex lens Power of concave lens $\mathrm{P}_{2}=-\quad \mathrm{D}$ Po wer of the conbi nation $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}=+1 \mathrm{D}$ Nat ure : Conver ging	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
	hi set II H NAL print Daft Page No.3 11 th March, 2013		

| 15. | Gr rcuit dagra mand worki ng
 Its use to det ect the optical signal | | |
| :--- | :--- | :--- | :--- | :--- |
| Circuit diagra mof an ill uni nated phot odi ode: | | | |

	(a) [NOTE Accept the alternati ve choi ces indi cati ng the correct directions of the oscillating components of Eand B] (b) $\frac{E_{0}}{B_{0}}=c$	$11 / 2$ $1 / 2$	2
17.	(a) Cause of rel ease of ener gy (b) Proof for independence of nucl ear density on mass nu mber 2 (a) Si nce the total initial mass of nuclei on the left side of reaction is greater thanthe total final mass of nucleus on the right hand side, this difference of mass appears as the energy rel eased. $\text { As } R=R_{0} \quad A^{1 / 3}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
18.	(a) Reasons of fail ure of wave theor y to expl ai n Photoel ectric effect. $1 \frac{1}{2}$ (b) Basic feat ures of Phot on pict ure (a) According to wave theory		

	(i) The maxi mumkinetic energy of the e nitted el ectron should be directly proportional t o the intensity of i nci dent radiations but it is not obser ved experi nentally. Aso maxi mum ki netic energy of the e mitted el ectrons shoul d not depend upon inci dent frequency according to wave theory, but it is not so. (ii) Electron emmiss ssiouldt ake place at all frequencies of radiationsi.e. there should not exist the threshold frequency. This fact contradicts experi nental observation (iii) There shoul d be a ti me lag in phot oel ectric e mmi ssi on but according to obser vation phot oel ectric e mmi ssi on is inst ant aneous (b) Accor di ng to phot on pict ure (i) Each quant u m of radiation has energy $\mathrm{h} \nu$ (ii) In phot oel ectric effect the el ectrons int he met al abs orbst his quant u mof energy v (iii) Whenthis energy exceeds the min mumenergy needed for the el ectron	$1 / 2$ $1 / 2$	3
19.	Deri vation of expressi on for KE and PE Ener gy level diagramfor Ly mann series From(i) and (ii)	1/2	

	OR (i) The magnitude of the electric field at the left face is $\mathrm{E}=50 \mathrm{NC}^{1}$ Theref ore flux through this face $=$ The magnitude of the electric field at the right face is $\mathrm{E}=100 \mathrm{NC}^{1}$ Theref ore flux through this face $\begin{aligned} Q & =2 \\ & =600 \end{aligned}$ Therefore net flux through the cylinder is (ii) Char ge encl osed by the cyli nder	1/2 ${ }^{1 / 2}$	3 3
22.	Expressi on for (i) Gurrent inloop (ii) Force (iii) Po wer Required Let the magnetic field acting on the loop be B and length of the rod PQ be ℓ		

	$\begin{gathered} r_{0}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)_{\mathrm{I}_{\mathrm{b}}} \\ =0.2 \mathrm{~mA} \\ \mathrm{r}_{0}=\frac{}{}=20 \mathrm{~K} \Omega \end{gathered}$ (2) de current gain, at $10 \mathrm{~V}, I_{C}=3.6 \mathrm{~mA}$ $\beta=\frac{I_{c}}{I_{b}}=\frac{3.6 \times 10^{-3}}{30 \times 10^{-6}}=120$ (3) ac current gai n [NOTE Gedit should al so be given to candi date who uses the ri ght procedure, but consi ders the val ues slightly different fromt hose used above]	$1 / 2$ $1 / 2+1 / 2$ $1 / 2$ $1 / 2$	3
25.	(a) Rel ati onshi p bet ween interference pattern and diffraction fromeach slit 1 (b) Cal culation of separation bet neen the position of first naxi ma of t wo wa vel engt hs a) In doubl e slit experi ment, the pattern on t he screen is act ually a super position of single slit defraction fromeach slit and double slitinterference pattern As a result, there appears a broader diffraction peak in which there occur several fringes of s maller widt hs due to double slit interference. b) Distance of first secondary maxi mumfromcentre of the screen $\mathrm{x}=\frac{3}{2} \frac{D \lambda}{a}$ Therefore spacing bet ween first secondary maxima on the screen for t wo given wavel engt hs	1 $1 / 2$ $1 / 2$	

	$\begin{aligned} \Delta x & =\frac{3 D}{2 a}{\mathbf{C}_{2}-\lambda_{1}-}^{2} \\ & =\frac{3 \times 1.5}{2 \times 2 \times 10^{-4}} 696-590^{-} \times 10^{-9} \\ & =\frac{4.5 \times 6 \times 10^{-5}}{4} \\ & =6.75 \times 10^{5} \mathrm{~m} \end{aligned}$	$1 / 2$ $1 / 2$	3
26.	Four parts 1 nark for each part a) Because during thunder stor mcar noul d act as an el ectrostatic shi eld b) D. Pat hak displayed values of safety of hu man life, hel pf ul ness, e mpat hy and scientific te mper. (or any ot her t wo rel evant val ues) c) Grat ef ul ness, indebtedness (or any ot her relevant val ue) d) Exa mple of any si milar action	1 $\begin{array}{\|l} 1 / 2+1 / 2 \\ 1 \\ 1 \end{array}$	4
27.	(a) Wor ki ng pri nci ple of potentio met er 1 D agra m 1 Expressi on 1 (b) Two possible causes for one si ded deflection $1+1$ (a) Principle: When a constant current flous through a wire of unifor marea of cross section then potential difference bet weent wo points on the wire is directly proportional tolength of this section of wire. Val	1 1	
	hi set II F NAL print Daft Page No. 12 11 th March 20		

	For s nall angle $\sin \theta \approx \theta$ In equilibirum the resulting equation of motion [If the student just wites that the needle, (i) When slightly dist ur bed fromits stable position experiences a torque due to the magnetic field and (ii) writes the expressi on for this torque, Award (1+1=2) marks] $\Rightarrow \frac{d^{2} \theta}{d t^{2}}=-\left(\frac{M B}{I}\right),$ (b) (i) Horizontal component of Earth's nagnetic fiel d=0 as $\frac{d^{2} \theta}{(d t)^{2} T h e ~ v a l ~ u e ~ o f ~ a n g l e ~ o f ~} d i p$ at that place $=90$ $\Rightarrow \quad{ }^{2}=\frac{M B}{I}$	1/2	5
29.	(a) Ray di agra mshow ng i mage for mation 1 Deri vation of expression for magnification 2 (b) Distincti on bet ween myyopia and hyper netropia 1 Correction of defects by diagra m 1		
	hii set II H NAL print Daft Page No. 16 11 th March		

My opi a can be correct ed by interposi ng a concave lens bet ween eye and object	Hyper metropi a can be corrected by int erposi ng a convex lens bet ween eye and object

[Award only half mark if dagra ns not draw, a ward full mark even if explanation is not written]

OR

(a) State nent of Huygen's pri nci ple	1
D agra m	1
Verifi cati on of Snell's law	1
(b) Expl anati on of (i) and (ii)	$1+1$

(a) According to Huygens pri nci ple, each point of the wavefront is the source of a secondary dist urbance and the wavelets e manating fromt hese points spread out in all directions witht he speed of the wave. Acommon tangent to all these wavelets, gi ves the ne w position of the wavefront at a ater ti ne.

Verification of Snell's law
Fromfi gure

$$
\begin{aligned}
& \operatorname{sini}=\frac{B C}{A C}=\frac{v_{1} t}{A C} \\
& \sin r=\frac{A E}{A C}=\frac{v_{2} t}{A C} \\
& \frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}}=\mu
\end{aligned}
$$

(b) Yes,
(i) Reflection and refraction arise through interaction of inci dent light withthe at onic constituents of matter. Aons may be vie wed as oscillat ors, which take upt he frequency of the ext ernal agency (li ght) causi ng forced oscill ations. The frequency of light e nitted by a charged oscillator equals its frequency of

	oscillation. Thus, the frequency of scattered li ght equal s the frequency of i nci dent light. [Any ot her correct expl anation]	1	
(ii) No. Energy carried by a wave depends on the a mplit ude of the wave, not on the speed of wave propagation.	1	5	

