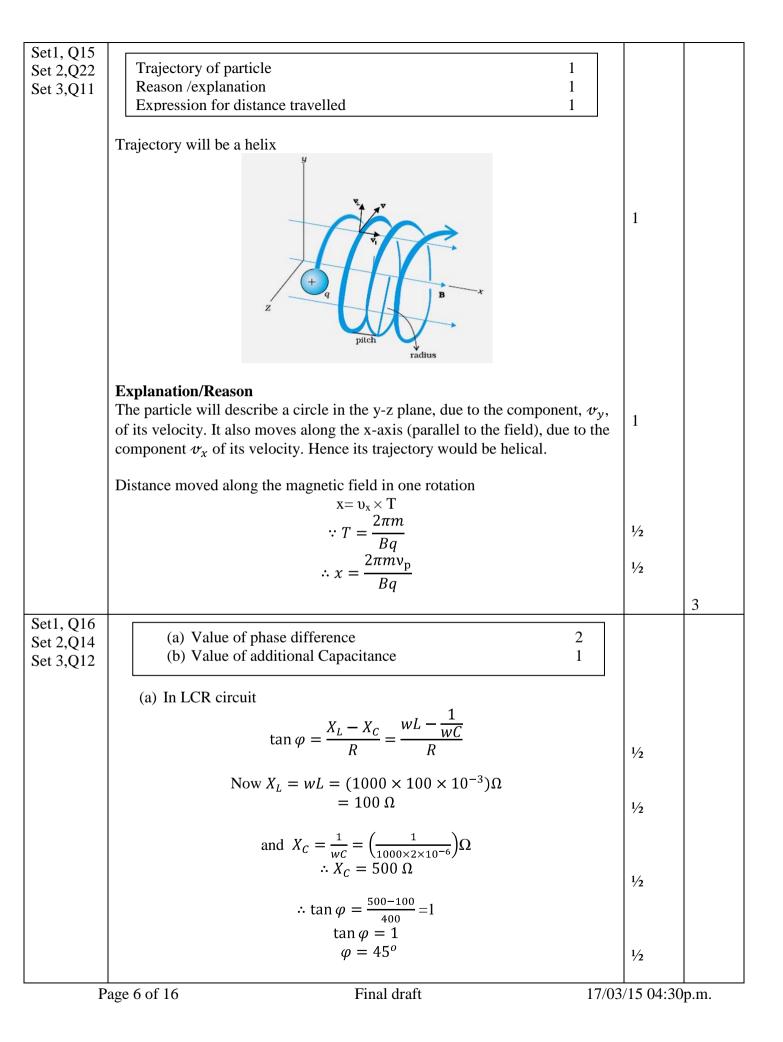
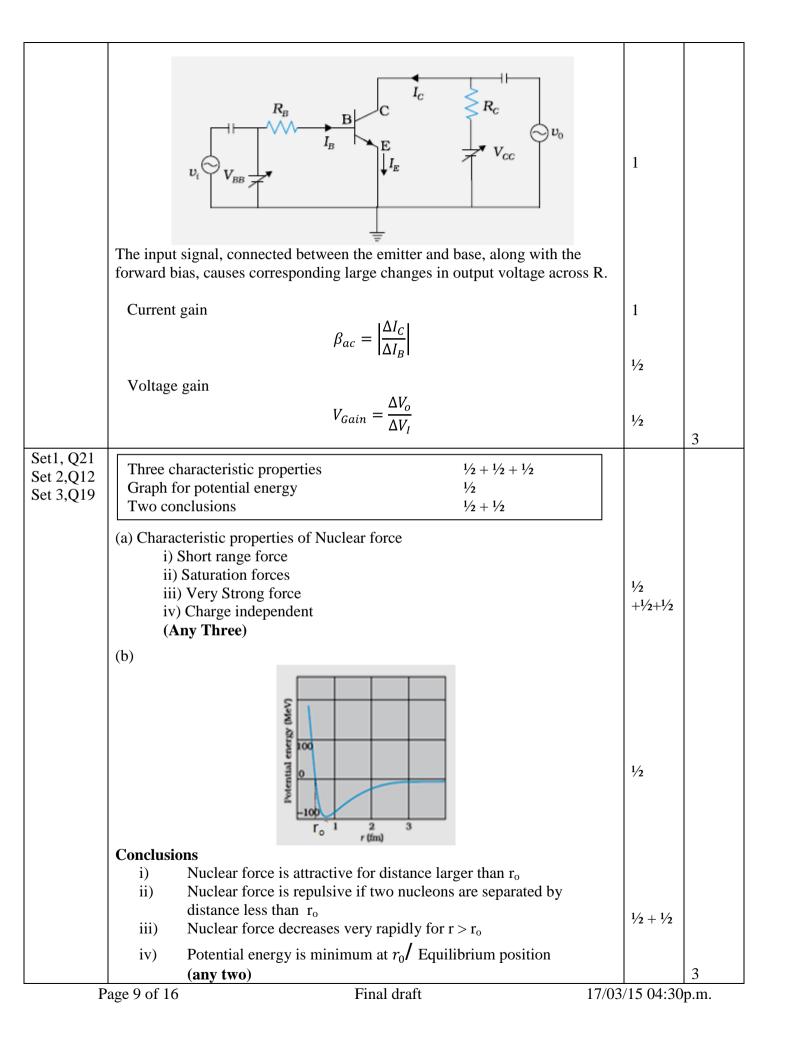
Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1, Q1	Self inductance of the coil is numerically equal to magnetic flux linked with	h it $\frac{1}{2}$	
Set2,Q5 Set3,Q4	when unit current flows through it. / Self inductance is numerically equal induced emf in the coil when rate of change of current is unity.		
	Unit-Henry or / volt-second/ ampere / weber $ampere^{-1}$	1/2	1
Set1, Q2 Set 2,Q3 Set 3,Q1	Scattering of the blue colour is maximum due to its shorter wavelength / per Rayleigh scattering law, the amount of scattering varies inversely with fourth power of wavelength.		1
Set1, Q3	T ₁	1/2	1
Set 2,Q4 Set 3,Q5	Since slope(= $\frac{1}{Resistance}$) of T ₁ is greater / Resistance of the wire at T lower.		
			1
Set1, Q4 Set 2,Q2 Set 3,Q3	Point to Point communication mode	1	1
Set 3,Q2 Set 2,Q1 Set 3,Q2	Due to conservative nature of electric field / These lines start from positive charges and terminate at the negative charges. <u>Alternatively.</u> There are two kinds of electric charges (positive and negative) (which acts the 'source' and 'sink' for the electric field lines.)		1
Set1, Q6	Section B	_ [
Set 2,Q8 Set 3,Q10	Formula for Energy 1/2 Formula for de-Broglieg wavelength 1/2 Calculation 1/2 Effect on wavelength 1/2 $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}}$ $\frac{\lambda_1}{\lambda_4} = \sqrt{\frac{K_4}{K_1}}$	l/2	
		1⁄2	
	But $K_n(= -E_n) \propto \frac{1}{n^2}$ Hence, $\frac{\lambda_1}{\lambda_4} = \sqrt{\frac{1}{16}}$	1/2	
	$\therefore \frac{\lambda_1}{\lambda_4} = \frac{1}{4}$ $\lambda_4 = 4\lambda_1 \text{i.e.} \lambda_4 > \lambda_1$	1/2	
P;	age 1 of 16 Final draft 17	7/03/15 04:30	p.m.

MARKING SCHEME SET 55/1/RU


			2
	Alternatively		2
	$\lambda_n = \frac{h}{p_n} = \frac{\lambda}{m\nu_n}$	1/2	
	Velocity of electron in n th state $v_n \propto \frac{1}{n}$	1/2	
	$\frac{1}{2} \propto \frac{1}{2} \cdot \lambda \propto n$	72	
	$\lambda_n \propto \frac{1}{\upsilon_n}^n \therefore \lambda \propto n$ $\therefore \frac{\lambda_4}{\lambda_1} = \frac{n_4}{n_1} = \frac{4}{1}$	1/2	
	$\therefore \frac{\lambda_4}{2} = \frac{n_4}{4} = \frac{4}{4}$		
	$\lambda_1 n_1 1$	1⁄2	2
Set1, Q7			2
Set 2,Q6	Any two Factors 1 + 1		
Set 3,Q9	1. Size of the antenna or aerial or $(L \sim \frac{\lambda}{4})$		
	2. Increase in effective power radiated by an Antenna (OR	1 + 1	
	Power radiated $\alpha \left(\frac{1}{\lambda}\right)^2$)	1 + 1	
	3. To minimize mixing of signals from different transmitters (Any two)		2
Set1, Q8			
Set 2,Q9	Labeling of current in different branches of the circuit1/2Calculation1		
Set 3,Q7	Result ¹ / ₂		
	$ \begin{array}{c} 3\Omega \\ & B \\ & $	1/2	
	6V L3 B L 4V		
	According to Kirchoff's Junction law at B $i_3 = i_1 + i_2 \therefore i_3 = i_1$	1/2	
	$(As I_2=0 \text{ (given)})$		
	Applying second law to loop AFEB		
	$i_3 \times 2 + i_3 \times 3 + i_2 R_1 = 1 + 3 + 6$	1⁄2	
	$\therefore i_3 = i_1 = 2 A$		
	From A to D along AFD \therefore V _{AD} = 2i ₃ - 1 + 3 × i ₃ = $(4 - 1 + 6)V$ = 9 V	1⁄2	
	[Alternatively, if the student determine value of V_{AD} by finding the value of R, award full marks.]		
	[<u>Note:</u> If the student just writes Kirchoff's rules, award ½ mark]		
			2

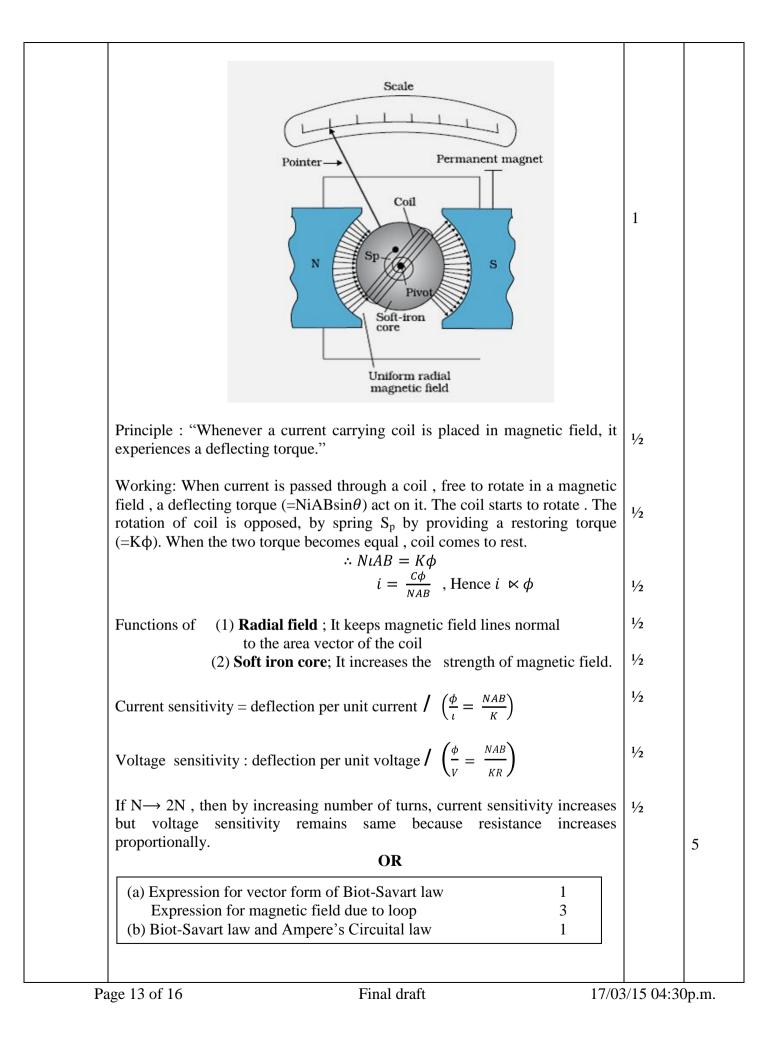
17/03/15 04:30p.m.

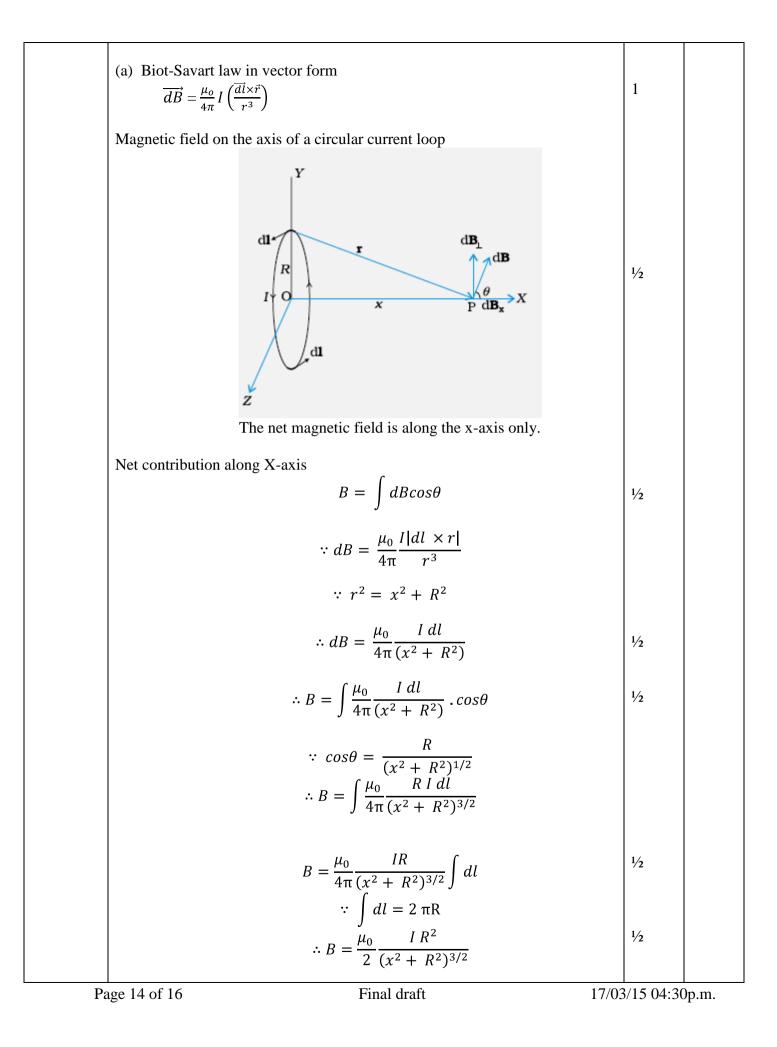
Set1, Q9 Set 2,Q10	Formula for magnification	1/2		
Set 3,Q8	Substitution and Calculation Result	1 1⁄2		
	$M = m_0 \times m_e$ = $\frac{L}{f_0} \left(1 + \frac{D}{f_e} \right)$ $\therefore 30 = \frac{L}{1.25} \left(1 + \frac{25}{5} \right)$		1⁄2	
	$\begin{array}{c} 1.25 (5) \\ 30 \times 1.25 = L \times 6 \\ L = 5 \times 1.25 \end{array}$		1/2	
	$= 6.25 \ cm$		1/2	2
	OR			
	Formula for magnification Calculation & Result Angular magnification Height of image	1/2 1/2 1/2 1/2 1/2		
	$M = \frac{f_o}{f_e}$		1⁄2	
	For objective lens, $ \begin{array}{c} $		1⁄2	
	$\therefore v_{o} = \frac{3000}{1999} \approx 1.5$ $\frac{h_{i}}{h_{o}} = \frac{v_{o}}{u_{o}}$ $h_{i} = 100 \times \frac{1.5}{3 \times 10^{3}} = .05 m$		1⁄2 1⁄2	
	Alternatively, Angular size of the object= $\frac{100}{3 \times 1000}$ radian = $\frac{1}{30}$ radian		1/2	
	: Angular size of image= $(\frac{1}{30} \times 30)$ radian = 1 radian		1/2	
	$\therefore \text{ Height of image} = 1 \times \left(\frac{5}{100}\right) \text{ m} = 0.05 \text{ m}$		1	2
Set1, Q10 Set 2,Q7 Set 3,Q6	Formula Substitution of correct value in formula Value of λ Region of wavelength	1/2 1/2 1/2 1/2 1/2		
	$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ For shortest wavelength in Balmer series $n_1 = 2$ $n_2 = \infty$		1/2	


	$\therefore \frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{\infty}\right)$ $-\frac{R}{2}$	1⁄2	
	$=\frac{R}{4}$ $\lambda = 3640A^{o}$		
	x = 3040A $x = 1.09 \times 10^7 m^{-1}$		
		1/2	
	[Note: Since the value of R is not given, award full marks to the candidate if		
	he writes $\lambda = \frac{4}{R}$]		
	It will lie in Ultra Violet region	1/	
	(Give ¹ / ₂ mark if the student just writes, visible region)	1⁄2	
	Section C		2
et1, Q11	Section C		
et 2,Q18	Formula for net capacitance and its calculation $\frac{1}{2} + \frac{1}{2}$		
et 3,Q15	Calculation for net charge ¹ / ₂		
	Formula and calculation for P.d ¹ / ₂		
	Formula and calculation for energy stored $\frac{1}{2} + \frac{1}{2}$		
	Net Capacitance, $\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$	1/2	
	1 1 1 1		
	$\frac{1}{C} = \frac{1}{20} + \frac{1}{30} + \frac{1}{15}$		
	20	1/	
	$\therefore \mathbf{C} = \frac{20}{3} \mu F$	1⁄2	
	Net Charge on Capacitors		
	q = CV		
	$=\frac{20}{3} \times 10^{-6} \times 90 \text{ C}$		
	$=600 \times 10^{-6} \mathrm{C}$		
	$= 600 \ \mu C \ (0.6 \ \text{mC})$	1⁄2	
	$\therefore P.d \ across \ C_2 = \frac{q}{C_2}$		
	600×10^{-6}		
	$= \frac{600 \times 10^{-6}}{30 \times 10^{-6}} V$		
		1⁄2	
	= 20 V		
	Energy stored in capacitoracross $C_2 = \frac{1}{2}C_2V_2^2$	1⁄2	
	$=\frac{1}{2}\times30\times10^{-6}\times400$		
	$2 = 6 \times 10^{-3} J (= 6mJ)$	1/2	
			3
et1, Q12	Derivation of the Relation 2		
et 2,Q19	Effect on drift velocity 1		
et 3,Q16			
	There being a random distribution, in the velocities of the charge carriers,	1/2	
	their average velocity can be taken to be zero. We have $F = ma = a F_{-} (F_{-} = a) ectric field)$		
	We have, $F = ma = e F_E$ (F_E =electric field) eF_E	1⁄2	
	$\therefore a = \frac{eF_E}{m}$		
	If τ is the average time between collisions (called 'relaxation time')	1⁄2	
Р		/15 04:3	0p.m.

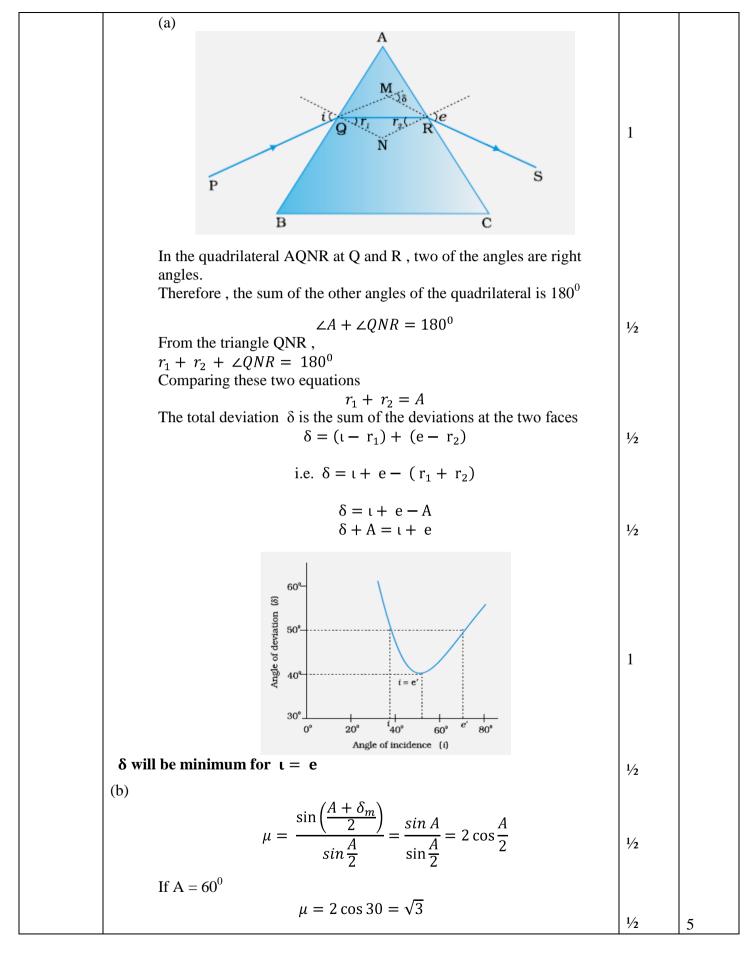
	$\nu_d = \frac{eF_E\tau}{m}$	1/2	
	Now , $F_E = \frac{P.D}{distance}$: For given E, the field becomes $\frac{1}{3}rd$ when the length is made 3 times. Hence, $v'_d(New) = \frac{1}{3}v_d$ $\therefore v_{d'} = \frac{v_d}{3}$ [<u>Note</u> : If explained by any other appropriate method award 1 mark for the explanation]	1/2 1/2	2
Set1, Q13 Set 2,Q20 Set 3,Q17	Explanation of Polarization through polarizer 1 Variation in I ₁ and I ₂ 1 Relation between I ₁ and I ₂ 1 Let unpolarized light be incident on a polaroid; its electric vectors, oscillating in a direction perpendicular to that of the alignment of the molecules in the polaroid, are able to pass through it while the component of light along the aligned molecules gets blocked. Hence the light gets linearly polarised. [Note I student gives labelled diagram, award full marks.] I ₁ will remain unaffected whereas I ₂ will decrease from maximum (=I ₀ /2) to	1	3
	zero of the incident light. $(I_1 = \frac{I_0}{2})$ $I_2 = I_1 \cos^2 \theta$ / $I_2 = (I_0 / 2) \cos^2 \theta$	1	3
Set1, Q14 Set 2,Q21 Set 3,Q18	Definition of Modulation index1Reason $\frac{1}{2}$ Calculation of USB and LSB $\frac{1}{2} + \frac{1}{2}$ Amplitude of AM $\frac{1}{2}$		
	The ratio of amplitude of modulating signal (E_m) and amplitude of carrier wave (E_C) is called modulating index. [<u>Note</u> : Also accept if only the formula ($\mu = \frac{E_m}{E_C}$) is given]	1	
	To avoid /minimize distortion: Given: $f_c=1.5 \text{ M Hz}$ $f_m=10 \text{ kHz} = 0.01 \text{ MHz}$ $\therefore \mu = \frac{E_m}{E_c}$ $\frac{50}{100} = \frac{E_m}{50}$	1/2	
	$ \begin{array}{r} 100 & 50\\ E_m &= 25 V\\ \text{USB frequency} = f_c + f_m\\ =(1.5+0.01)\text{MHz}\\ =1.51 \text{ MHz} \end{array} $	1/2 1/2	
	LSB frequency= f_c - f_m =(1.5-0.01)MHz =1.49 MHz	1/2	3

	(b) Power Factor When power factor=1, we have $X_L=X_C$ $\therefore X'_C = \frac{1}{\omega C'} = 100\Omega$		
	This gives $C' = \frac{1}{100\omega} = 10\mu F$ We, therefore, need to add a capacitor of capacitance $(10-2)\mu F=8\mu F$ in parallel with the given capacitor.	1/2	
	<u>Alternatively</u> , Let addition capacitance C ₁ be connected $X'_{C} = \frac{1}{1}$	1/2	
	$X'_{C} = \frac{1}{1000(2+C_{1}) \times 10^{-6}}$ $\therefore 100 = \frac{1}{1000(2+C_{1}) \times 10^{-6}}$	1/2	
	$ \therefore 2 + C_1 = 10 \\ C_1 = 8 \mu F $	1/2	2
Set1, Q17 Set 2,Q15 Set 3,Q13	Generalized form of Ampere's Circuital law1Significance1Explanation1		3
	Generalized form of Ampere Circuital law: $\oint \vec{B} \cdot \vec{dl} = \mu_o \left(I_C + \varepsilon_o \; \frac{d\varphi}{dt} \right)$	1	
	It signifies that the source of magnetic field is not just due to the conduction electric current(ic) due to flow of charge but also due to the time rate of change of electric field called displacement current.	1	
	During charging and discharging of a capacitor the electric field between the plates will change so there will be a change of electric flux (displacement current) between the plates.	1	3
Set1, Q18 Set 2,Q16 Set 3,Q14	Labelled Diagram1Verification of Snell's law2		
	Incident wavefront Medium 1 v_2 v_2 v_1 v_2 v_1 v_2 v_2 v_1 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_2 v_1 v_2 v_2 v_1 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_1 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_1 v_2 v_1 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_1 v_2 v_2 v_1 v_2	1	
	In \triangle ABC $\sin i = \frac{BC}{AC} = \frac{v_1 t}{AC}$	1/2	
P		/15 04:30	p.m.


	In \triangle CEA $\sin r = \frac{AE}{AC} = \frac{v_2 t}{AC}$ $\therefore \frac{\sin i}{\sin r} = \frac{BC}{AE} = \frac{v_1 t}{v_2 t} = \frac{v_1}{v_2}$ $\therefore \mu_1 = \frac{c}{v_1}$ $\mu_2 = \frac{c}{v_2}$	1/2	
Set1, Q19	$\therefore \frac{\mu_2}{\mu_1} = \frac{\nu_1}{\nu_2}$ $\therefore \frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1}$ or $\mu_2 \sin r = \mu_1 \sin i$ It is Snell's law. Name of Gates P and Q $\frac{1}{2} + \frac{1}{2}$	1/2	3
Set 2,Q17 Set 3,Q21	Truth Table 1 Equivalent Gate 1/2 Logic symbol of equivalent Gate 1/2 Gate P : AND 4 Gate Q: NOT 1	1/2 1/2	
	$\begin{tabular}{ c c c c } \hline Truth table \\ \hline Input & & & \\ \hline A & B & X & Y \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ \hline \end{tabular}$	1	
	Equivalent Gate: NAND	1/2 1/2	3
Set1, Q20 Set 2,Q11 Set 3,Q22	Labeled Circuit diagram1Working of Amplifier1Expression for voltage gain1/2Expression for current gain1/2Page 8 of 16Final draft17/03	3/15 04:30	



Set1, Q22 Set 2,Q13	(a) Three experimental observations $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) Failure of wave theory1 $\frac{1}{2}$		
	 (a) 1. There is no emission of photoelectrons i.e. no current if the frequency of the incident radiation is below a certain minimum value however large may be the intensity of the light. 2 The current varies directly with the intensity of the incident radiation. 3.The current becomes zero at a certain value of negative potential, applied at the anode , this is known as stopping potential. 4. The value of stopping potential increases with the increase in the frequency of the incident radiation. 5.Maximum kinetic energy of the photo electrons does not depend upon intensity of light 6.Maximum kinetic energy of photoelectron increases with the frequency of the incident radiation. 7.The process of photoelectric emission is instantaneous. (Any three) (b) It fails to explain why 1.The photo electric emmission is instantaneous. 2.There exists a threshold frequency for a given metal. 3.The maximim KE of photoelectrons is independent of the intensity of incident radiation. 	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	3
	OR		
	(a) Two properties of photon $\frac{1}{2} + \frac{1}{2}$ (b) Eienstein equation1Explanation of threshold frequency $\frac{1}{2}$ Stopping potential $\frac{1}{2}$		
	 (a) i) The energy of a photon is hv ii)Each photon is completely absorbed by a single electron. (b) E_K = hv - W 	1/2 + 1/2	
	<u>Alternatively</u> , $h\nu = h\nu_0 + \frac{1}{2}m\nu_{max}^2$ or $h\nu = h\nu_0 + eV_o$ or $E_k = h(\nu - \nu_o)$ (Any one)	1	
	i. When Incident frequency < Threshold frequency, there will be no emission of electrons. Hence, frequency of incident radiation should be greater than threshold frequency. $\left(\nu_o = \frac{W}{h}\right)$	1/2	
	$E_K = eV_0 = h\nu - W$ $\therefore V_0 = \frac{h}{e}\nu - \frac{W}{e}$		
	ii. At $\nu = \nu_0$, $E_k = eV_0 = 0$ V _o is called stopping potential.	1/2	3
Pag		3/15 04:30)p.m.


Value of voltage and frequency in India $\frac{1}{2} + \frac{1}{2}$ Reason of A.C being used more $\frac{1}{2}$ Use of transformer with D.C $\frac{1}{2}$ Two qualities of Anil $1+1$		
(i) voltage = 220 V frequency = 50 Hz	1/2 1/2	
 (ii) a) It can be stepped up / stepped down b)It can be converted into d.c c)Line losses can be minimised 	1⁄2	
 (iii) No (iv) Helping / Brave / Kind / Knowledge about AC or DC / Knowledge about insulator & conductors/ Awareness about safety precautions. (any two) 	1⁄2 1+1	3
Section E		5
(a) Definition of electric flux and unit $1 + \frac{1}{2}$ Justification $1\frac{1}{2}$ (b) Proof $1+1$		
 a) Total number of electric lines of force passing perpendicular through a given surface. Unit – newton m² / coulomb (or V-m) 	1 1⁄2	
According to Gauss theorem, the electric flux through a closed surface depends only on the net charge enclosed by the surface and not upon the shape or size of the surface.	1⁄2	
For any closed arbitrary slope of the surface enclosing a charge the outward flux is the same as that due to a spherical Gaussian surface enclosing the same charge. Justification : This is due to the fact (i) electric field is radial and (ii) the electric field $E \propto \frac{1}{n^2}$	1	
b)		
$\therefore \text{According to Gauss theorem ,} \\ \varphi \oint \vec{E} \cdot \vec{dS} = \frac{q}{E_0} = 0 \\ (\text{undergo inside the shell is gere })$		
(::charge inside the shell is zero.) $\therefore E. dS = 0$, But $dS \neq 0$ $\therefore E = 0$	1 + 1	5
	Use of transformer with D.C Two qualities of Anil (i) voltage = 220 V frequency = 50 Hz (ii) a) It can be stepped up / stepped down b)It can be converted into d.c c)Line losses can be minimised (any one) (iii) No (iv) Helping / Brave / Kind / Knowledge about AC or DC / Knowledge about insulator & conductors/ Awareness about safety precautions. (any two) Section E (a) Definition of electric flux and unit $1 + \frac{1}{2}$ Justification $\frac{1}{2}$ (b) Proof $1 + 1$ a) Total number of electric lines of force passing perpendicular through a given surface. Unit – newton m ² / coulomb (or V-m) According to Gauss theorem, the electric flux through a closed surface depends only on the net charge enclosed by the surface and not upon the shape or size of the surface. Justification: This is due to the fact (i) electric field is radial and (ii) the electric field $E \propto \frac{1}{R^2}$ b) According to Gauss theorem, $\phi \oint \vec{E} \cdot d\vec{S} = \frac{q}{E_0} = 0$ (:charge inside the shell is zero.) $\therefore E = 0$	Use of transformer with D.C $\frac{1/2}{1 + 1}$ (i) voltage = 220 V frequency = 50 Hz (ii) a) It can be stepped up / stepped down b) It can be converted into d.c c) Line losses can be minimised (any one) (iii) No (iv) Helping / Brave / Kind / Knowledge about AC or DC / Knowledge about insulator & conductors/ Awareness about safety precautions. (any two) Section E (a) Definition of electric flux and unit $1 + \frac{1}{2}$ (b) Proof $1 + 1$ a) Total number of electric lines of force passing perpendicular through a given surface. Unit - newton m ² / coulomb (or V-m) According to Gauss theorem, the electric flux through a closed surface depends only on the net charge enclosed by the surface and not upon the shape or size of the surface. For any closed arbitrary slope of the surface enclosing a charge the outward flux is the same as that due to a spherical Gaussian surface enclosing the same charge. Justification: This is due to the fact (i) electric field is radial and (ii) the electric field $E \propto \frac{1}{R^2}$ b) $\int urface charge Gaussian \int extrace Caussian Caussian Caussian \int extrace Caussian Caussian Caussian \int extrace Caussian Caussian \int extrace Caussian Caussian Caussian \int extrace Caussian Ca$

OR		
(a) Derivation for energy stored2Derivation for energy density1(b) Required Proof2		
(a) $dU = dW = \int_0^q V dq$	1/2	
$U = \int_0^q \frac{q}{C} dq$	1⁄2	
$= \frac{1}{C} \left \frac{q^2}{2} \right _0^q$ $U = \frac{1}{C} \frac{q^2}{2} \text{ or } \frac{1}{2} CV^2$	1/2	
$U = \frac{1}{C} \frac{1}{2} \text{ or } \frac{1}{2} CV^2$	1/2	
Energy Density $U = \frac{Energy}{Volume} = \frac{1}{2} \frac{CV^2}{A.d}$	1⁄2	
$U = \frac{\frac{1}{2}CV^2}{A.d}$ But $C = \frac{\epsilon_o A}{A}$ and $V = Ed$		
But $C = \frac{\epsilon_0 A}{d}$ and $V = Ed$ $\therefore U = \frac{1}{2} \epsilon_0 E^2$	1/2	
(b) Energy before connecting $U = \frac{1}{2} C_1 V_1^2$	1/2	
After connecting Common potential = $\frac{q_1+q_2}{c_1+c_2}$ = $\frac{c_1v_1}{c_1+c_2}$	1⁄2	
Energy Stored $U' = \frac{1}{2}(c_1 + c_2)\frac{c_1^2 v_1^2}{(c_1 + c_2)^2}$		
$U' = \frac{1}{2} \frac{c_1^2 v_1^2}{(c_1 + c_2)}$	1/2	
$=\frac{1}{2}\frac{c_1}{(c_1+c_2)}$ U		
$\therefore U' < U$	1⁄2	5
Set 1, Q25Labelled diagram1Set 2,Q26Labelled diagram1Set 3,Q24Principle and working $\frac{1}{2} + 1$ Function of radial magnetic field and soft iron core $\frac{1}{2} + \frac{1}{2}$ Current sensitivity $\frac{1}{2}$ Voltage sensitivity $\frac{1}{2}$ Explanation $\frac{1}{2}$		
Page 12 of 16 Final draft	17/03/15 ()4·3()n m

	(b) Biot-Savart law can be expressed as Ampere's circuital law by considering the surface to be made up a large number of loops. The sum of the tangential components of the magnetic field multiplied by the length of all such elements, gives the result $\oint \vec{B} \cdot \vec{dl} = \mu_0 I$ <u>Alternatively</u> , Ampere Circuital law and Biot-Savart law, both relate the magnetic field and the current, and both express the same physical consequences of a steady current.	1	5
Set1, Q26 Set 2,Q24 Set 3,Q25	(a) Expression for the Amplitude and the conditions 3 (b) Effect on Interference fringes 1+1 (a) The resultant displacement will be $\hat{y} = \overline{y_1} + \overline{y_2}$ $= a[\cos \omega t + \cos(\omega t + \phi)]$ $= 2a \cos \frac{\phi}{2} \cos \left(\omega t + \frac{\phi}{2}\right)$ The amplitude of the resultant displacement is $A = 2a \cos \frac{\phi}{2}$ \therefore Intensity $A^2 = 4a^2 \cos^2 \frac{\phi}{2}$ If $\phi = 0, \pm 2\pi, \pm 4\pi$, the intensity will be maximum. i.e $\phi = 2n\pi$ $= n\lambda$ where $n = 1, 2, 3$ Hence interference will be constructive. If $\phi = (2n + 1)\pi$ $= (2n + 1)\frac{\lambda}{2}$ where $n=1, 2, 3$ Hence interference will be destructive. (b)(i)Pattern will become less and less sharp. (i) At the centre there will be white fringe followed by red colour fringes on either side. OR (a) Diagram 1 Mathematical Proof 1½ Graph for δ 1 Conditions ½ (b) Relation to μ ½ Value of μ ½	1/2 1/2 1/2 1/2 1/2 1/2 1 1 1	5
P	age 15 of 16 Final draft 17/03	3/15 04:30	Dp.m.

Page 16 of 16

Final draft

17/03/15 04:30p.m.