SAMPLE QUESTION PAPER

CHEMISTRY

(313)

Note: (i) All question in Section A are compulsory.
(ii) Attempt only one out of two options in section B, i.e., attempt either Part I or Part II or Part III in Section B.
(iii) Marks for each question is indicated against it.
(iv) Use log tables if necessary.

Section A

1. What is the molar mass of NH_{3} ?
2. A Sample of nitrogen gas consists of 4.63×10^{22} nitrogen atoms. How may moles of N atoms are there?
3. What is the lowest possible temperature in Kelvin units?
4. Derive SI units for
(i) Force
(ii) Pressure
5. Explain the geometry of the following:
(i) NH_{3}
(ii) $\mathrm{B} \mathrm{F}_{3}$
6. A sample of nitrogen gas weighing 9.3 g at a pressure of 0.99 atm a accoutres a volume of 12.4 litres at 55 K temperature. What do you expect its volume to be when the temperature is 220 k ? Assume that pressure stays constant.
7. What is the relationship between the standard free energy change and the equilibrium constant of the reaction?
8. Calulate enthalpy for the following reaction:
$2 \mathrm{H}_{2}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Given Bond energy of $\mathrm{H}-\mathrm{H}$ bond $=436 \mathrm{KJ} \mathrm{mol}^{-1}$
Bond energy of $\mathrm{O}-\mathrm{H}$ bond $=423 \mathrm{KJ} \mathrm{mol}^{-1}$
Bond energy of $\mathrm{O}=\mathrm{O}$ bond $496.4 \mathrm{KJ} \mathrm{mol}^{-1}$
9. Arrange the following oxides in the increasing order of acidic property. Justify your answer.
$\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{~B}_{2} \mathrm{O}_{3}$
10. Draw the structure of the following:
(i) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(ii) $\mathrm{P}_{4} \mathrm{O}_{10}$
(iii) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(iv) ClO_{2}
11. Explain the following giving suitable reasons
(i) BF_{3} is weaker lewis acid as compared to BCl_{3}
(ii) CCl_{4} does not hydrolyse but SCl_{4} does.
(iii) N_{2} is inert at room temperature.
(iv) SF_{4} is known but SCl_{6} is not.
12. (i) What is le Chatelier's principle?
(ii) For the following reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{I}_{2}(\mathrm{~g})
$$

the rate of recation is rate $=\mathrm{K}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) / \mathrm{I}_{2}(\mathrm{~g})\right]^{3 / 2}$
(a) What is the order of the reaction with respect to each reactant?
(b) What is the overall order of the reaction?
(c) What is the unit of K , if the concentrations are measured in $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{sec}^{-1}$?
13. A cell is set up between Cr and Cu electrodes
(a) $\mathrm{Cr}(\mathrm{s})\left|\mathrm{Cr}^{3+}(\mathrm{aq}) \| \mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{s})$

If the two lalf cells work under standard conditions, calculate the e.m.f. of the cell.

$$
\mathrm{E}^{\circ} \mathrm{Cr}^{3+}\left|\mathrm{Cr}=-0.74 \mathrm{~V} ; \mathrm{E}^{\circ} \mathrm{Cu}^{2+}\right| \mathrm{Cu}=+0.34 \mathrm{~V}
$$

(b) Calculate K_{p} for the reaction $\mathrm{COCl}_{2} \quad \mathrm{CO}+\mathrm{Cl}_{2}$ in atom and Nm^{-2}, The equilibrium partial pressure of $\mathrm{COCl}_{2}, \mathrm{CO}$ and Cl_{2} are $0.20,0.16$ and 0.26 atm . respectively. ($1 \mathrm{~atm}=101300 \mathrm{Nm}^{-2}$)
14. (a) Write down ideal gas equation.
(b) Give three different values of R in the ideal gas equation.
15. (a) Write the IUPAC names of the following organic compoumds :
(i)

(ii)

(iii)

(iv)

(b) Define the following (any two only)
(i) Electrophiles
(ii) Nucleophiles
(iii) Catenation
(iv) Isomerism
16. (a) What is electrovalent bond? Explain the term lattice energy as applied to ionic crystal How is enthalpy of formation of NaCl calculated, using Born Habeis cycle?
(b) Why is sigma bond stronger than π - bond?
17. (a) 0.0663 g of an organic compound on combustion geve 0.621 g of CO_{2} and 0.0381 g of $\mathrm{H}_{2} \mathrm{O}$. st also
(b) What is the ratio of the mass of orygen that combines with 1.0 g Carbon in carbon monoxide and carbon dioxide?
18. (a) Write de Broglic expression.
(b) Write down Balmer formula and explain the terms imrowed, what is the wavelength of the light emitted when the electron in a hydrogen atom jumps from $\mathrm{N}_{2}=4$ to $\mathrm{N}_{1}=1$ levels?
(Rydberg Constant $\mathrm{R}=109677 \mathrm{~cm}^{-1}$)
19. Define 'Entropy. what are its SI units?

Predict giving reasons, the sign of entropy change, $\Delta \mathrm{S}$ for the following reaction:
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
What is the significance of the term $\mathrm{T} \Delta \mathrm{S}$ in $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$?
(b) The heat evolved in the combustion of glucose is shown in the following equation:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}$ (1) $\Delta \mathrm{H}=-2840 \mathrm{KJ}$
How much energy will be required for production of 1.08 g of glucose?
$\left(\right.$ Molar mass of glucose $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
20. (a) Explain with the help of the relevant structural changes, the stronger acidic character of Phenol than alcohols
(b) Identify the products A, B, and C the following reaction :

Section-B

PART-I (ENVIRONMENTAL CHEMISTRY)

1. (a) Define any Two of the following terms
(i) Pollutant
(ii) Biosphere
(iii) Eutrophication
(iv) Biological oxygen Demand (BOD)
(b) List four effects of acid rain
2. Describe with the help of diagram the three stages of treatment of waste water
3. How does carbon get into the environment from dead organic mater.
4. Show diagrammatically how heavy metals enter into the echo system.
5. The increase in concertration of accumulated toxic chemicals as one goes higher in the food chain is termed as Bio magnification. Draw an appropriate food chain consisting of Mosquito, Marshy plant,
Bird and fish and also label these components as producer, Primary consumer, Secondary consumer and tertiary consumer, showing in increase in concentration of toxic chemicals.

PART-II (CHEMISTRY AND INDUSTRY)

1. Define any Four of the following :

Dyes, Drugs medicines, paints, mother glass
Petrochemicals, Polymerisation,
2. (a) Distinguish between thermoplastic and thermosetting polymers
(b) Differentiate between analgesics and antipyretics
(c) Differentiate between antiseptics and disinfectants
3. What do you understand by Reinforced concrete Construction (RCC).
4. Each of the following monomer polymerises to give different product. Show the formation of the polymer
products by using the 3 monomer units each.
(i)

(ii)

5. Justify the superiority of Allopathic system of medicine over the alternative systems of medicine by giving atleast two advantages.

MARKING SCHEME
 CHEMISTRY

Question No. Expected value points

Distribution of Marks

1. The molar mass of NH_{3} is 17

$$
14+3=17
$$

1 mark
2. $\frac{4.63 \times 10^{27}}{6.02 \times 10^{23}}{ }_{\text {atom }}$ ams $/ \mathrm{mol}$
0.0769 mol
$1 / 2$ mark
1/2 mark
If units are not given deduct $\frac{1}{2}$ mark
3. Zero Kelvin 1 mark
4. (i) Force Mass \times Accusation $1 / 2$ mark
(ii) Pressure Force / Area
(iii) $\mathrm{Kg} \mathrm{m}^{-1} \mathrm{~S}^{-2}$
5. (i) correct Geometry $\frac{1}{2}$

1/2 mark
1/2 mark

Pyramid Shape $\frac{1}{2}$
1/2 mark
6. $\mathrm{V}_{1}=12.42, \mathrm{~V}=? \quad \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{T}_{1}=55 \mathrm{k} \mathrm{T}_{2}=220 \mathrm{k}$
$\frac{12.42}{55 \mathrm{k}}=\frac{\mathrm{V}_{2}}{220 \mathrm{k}}$
$\mathrm{V}_{2}=4.92$
7. Correct relation
8. $2 \mathrm{H}-\mathrm{H}$ $\mathrm{O}-\mathrm{O}$ 496.4

4×463

1 mark
1 mark

2 mark
1 mark

1 mark
1 mark
1 mark

Justification
Large the Size of cation less acidic will be the oxide.
10. Correct Structure

1×4 marks
11. (i) Due to back bonding
(ii) Due to absence of d - orbital in C
(iii) Dissociation energy is very high
(iv) Due to larger size of Cl Six Cl can not be accommodated around S
$1 \times 4=4$ marks
12. (a) It states that when a system at equilibrium is disturbed by a change in concentration, Pressure or temperature, a net charge occurs in it in a direction that tends to decrease the disturbing factor.

1 mark
(b) (i) First order with respect is $\mathrm{C}_{2} \mathrm{H}_{4}$ and 1.5 w. r. t. I_{2}

1 mark
(ii) The overall order of reaction is $2-5$
$1 / 2$ mark
(iii) $x=\frac{\sec ^{-1}}{\left(\mathrm{~mol} d m^{-3}\right)^{3 / 2}}$

1/2 mark
$=\mathrm{mol}^{-3 / 2} \mathrm{dm}^{9 / 2} \mathrm{sec}^{-1}$
1 mark
deduct half mark if units are not given
13. (a) Anode reaction $=\mathrm{Cr}(\mathrm{S}) \rightarrow \mathrm{Cr}^{3+}+3 \mathrm{e}^{-}$

$$
\begin{array}{lc}
\text { Cathode }=\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} & 1 \text { mark } \\
\mathrm{E} \text { Cell }=\mathrm{E}^{\circ} \mathrm{Cell}=0.34-(-0.74)=1.08 \mathrm{~V} & 1 \text { mark } \\
\mathrm{K}_{\mathrm{P}} \text { in atmosphere } \\
\mathrm{COCl}_{2}(\mathrm{~g}) \quad \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) & \\
\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{PCO} \times \mathrm{PCl}_{2}}{\mathrm{P} \mathrm{CO} \mathrm{Cl}} 2 & =\frac{(0.16 \mathrm{~atm})(0.26 \mathrm{~atm})}{(0.20 \mathrm{~atm})} \\
& \\
& =\frac{0.16 \times 0.26}{0.20}=0.21 \mathrm{~atm}
\end{array}
$$

(b) $\quad \mathrm{K}_{\mathrm{P}}$ in $\mathrm{N} \mathrm{m}^{-2}$
$\mathrm{K}_{\mathrm{p}}=0.21 \mathrm{~atm}$ and $1 \mathrm{~atm}=101300 \mathrm{~N} \mathrm{~m}^{-2}$
$\therefore \quad \mathrm{K}_{\mathrm{P}}=(0.21 \mathrm{~atm})\left(101300 \mathrm{Nm}^{-2} \mathrm{~atm}^{-1}=21273 \mathrm{~nm}^{-2} \quad 1\right.$ mark
14. (a) $\mathrm{V} \alpha \frac{1}{\mathrm{P}}$ at Constant temp. (Boyle's Law)
$\mathrm{V} \alpha \mathrm{T}$ at Constant Pressure (Charles Law)
$\mathrm{V} \alpha \mathrm{n}$ at constant temp and pressure (Avogadro's Law)
$\mathrm{V} \alpha \mathrm{n} / \mathrm{P}$ or $\mathrm{PV} \alpha \mathrm{nT}$
or $\mathrm{PV}=$ Constant $\times \mathrm{nT}$
$\mathrm{PV}=\mathrm{n} \mathrm{RT}$ 1/2 mark
(b) $\mathrm{R}=0.082057 \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$

$$
\mathrm{R}=8.314 \times 10^{7} \mathrm{erg} \mathrm{~mol}^{-1} \mathrm{k}^{-1}
$$

$$
\mathrm{R}=1.987 \times 10^{7} \mathrm{Cal} \mathrm{~mol}^{-1} \mathrm{k}^{-1} \quad 1 / 2 \times 3=11 / 2 \text { marks }
$$

15. (a) (i) 2-methyl propane-2 ol
(ii) 4-methyl pentanoic acid
(ii) Cyclohexene
(iv) 3-bromo-chloro benzene
$4 \times 1 / 2=2$ marks
(ii) An electrophile is positively charged species It is election setting, It attacks at position of high density. Examples $\mathrm{H}^{+} \mathrm{NO}_{2}^{+}, \mathrm{Ag}^{+}$
(iii) Nucleophile is a negatively charged species. It is nucleus seeking. It attacks a position of low election density examples $\mathrm{OH}-\mathrm{NO}_{2}^{-}$etc.
(iii) The property of linking of atoms of the same element with ano there to form chains or signs is known as catenation.
(iv) The substance which have the same molecular formula but differ in their physical and Chemical properties are called isomers. This general phenomenon is known as isomerism. $1 \times 2=2$ marks
16. (a) An electrovalent bond is formed when one or more electron from one atom gets completely transferred to another atom or atoms and each atom acquires a nearest noble gas Configuration.
Lattice energy is the amount of energy released when one mole of the substance is formed from its ions e.g.
$\mathrm{Na}^{+}(\mathrm{g})^{+} \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{s})-\Delta \mathrm{H}$
$\Delta \mathrm{H}=-788.5 \mathrm{~K} \mathrm{~J} \mathrm{~mol}^{-1} \quad 1 / 2$ mark
Born Haber Cycle
$\Delta \mathrm{H}_{f}=\Delta \mathrm{H}_{\mathrm{s}}+\mathrm{IE}+\Delta \mathrm{H}_{\text {diss }}-\mathrm{E} \mathrm{A}+\Delta \mathrm{H}$ Latter energy
$\Delta \mathrm{Hf}=$ Heat of formation $\quad 11 / 2$ marks
$1 \mathrm{E} \rightarrow 1$ ionization enthalpy
Δ Hdis \rightarrow Heat of dissociation
EA \rightarrow Electron gain enthalpy
$\Delta \mathrm{H}_{\text {lattice }} \rightarrow$ Lattice energy
(b) α-bond is formed due end overlap
π-bond is formed due is Side ways overlaping 1 mark
17. (a) $\% \mathrm{C}=\frac{0.621 \times 12}{44 \times 0.0663} \times 100=25.54 \quad \frac{25.54}{12}=2.128 \quad \mathrm{C}=1$

$$
\begin{array}{lll}
\% \mathrm{H}=\frac{0.6381 \times 2}{18 \times 0.0663}=6.38 & \frac{6.38}{1}=6.38 & \mathrm{H}=3 \\
\frac{68.1}{32}=2.128 & \mathrm{~S}=1 & 3 \text { marks }
\end{array}
$$

(b) $\mathrm{CO}=4: 3$
$\mathrm{CO}_{2}=8: 311$ mark
18. (a) $\mathrm{E}=\mathrm{h} v \quad v=\frac{c}{\lambda}$
$\lambda=\frac{h}{m c}$ or $\lambda=\frac{h}{p}$
1 mark
(b) $v=\frac{1}{\lambda}=\left(\mathrm{n}_{1}^{2}-\frac{1}{n_{2}^{2}}\right)$

1 mark
$=109677\left(\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right)$
$=109677 \times \frac{15}{16}=102822 \mathrm{Cm}^{-1}$
1 mark
$\lambda=\frac{1}{v}=\frac{1}{102822}=9.7 \times 10^{-6} \mathrm{~cm}=97 \mathrm{~nm}$
1 mark
19. (a) The entropy is measure of disorder or randomness in a system. the greater the disorder in a system, the greater is the entropy of the system

1 mark
1/2 mark
SI unit $=\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
entropy decrease
It ΔS total is positive then section will be spontaneous
$\Delta \mathrm{G}$ Syst $=-\mathrm{T} \Delta \mathrm{S}$ univ
1/2 mark
(b) $1 \mathrm{~mol}=-2840 \mathrm{~K} \mathrm{~J}$
$180=-2840 \mathrm{~K} \mathrm{~J}$
$1.08=\frac{-2840}{180} \times 1.08=K \mathrm{~J}=\Delta \mathrm{H}$
1 mark
$\Delta \mathrm{E}=\Delta \mathrm{H}-\Delta \mathrm{V}_{2 q} \mathrm{RT}$
$\Delta \mathrm{H}-\mathrm{O} . \mathrm{R} \mathrm{T}=\Delta \mathrm{H}$
$=17.04 \mathrm{~K} \mathrm{~J}$
1 mark
20. (a)

(b) $\mathrm{A}=\mathrm{CH}_{3} \mathrm{COO} \mathrm{Na}$
$\mathrm{B}=\mathrm{CH}_{4}$
$\mathrm{C}=\mathrm{CH}_{3} \mathrm{Cl} \quad 4 \times 1 / 2$ markw

SECTION B

PART-I ENVIRONMENTAL CHEMISTRY

1. (a) 1 Mark for each of the two correct definitions

2 marks
(b) $\frac{1}{2}$ Mark for each of four correct effects

2 marks
2 marks
2 marks
2 marks
1 mark
3. Through Decay and decomposition due to micro-organisms
4. For indicating correct sources

1 mark
For showing correct pathways
1 mark
5. Marshy Plant \longrightarrow Mosquito \longrightarrow Fish \longrightarrow Bird

Producer Pri-consumer Sec-consumer Ter-consumer
Correct food chain 1 mark
Correct labelling 1 mark
PART-II CHEMISTRY AND INDUSTRY

1. 1 Mark for each of the Four correct definition

4 marks
2. (a) 1 Mark for each definition
3. correct description
4. (i)

5. Correct Advantages

1 mark for each

