
 175

COMPUTER SCIE�CE (868)

Aims (Conceptual)

(1) To understand algorithmic problem solving

using data abstractions, functional and

procedural abstractions, and object based and

object oriented abstractions.

(2) To understand: (a) how computers represent,

store and process data by studying the

architecture and machine language of a simple

microprocessor and the different levels of

abstraction that mediate between the machine

and the algorithmic problem solving level and

(b) how they communicate with the outside

world.

(3) To create awareness of ethical problems and

issues related to computing.

Aims (Skills)

To devise algorithmic solutions to problems and to

be able to code, validate, document, execute and

debug the solution using the Java programming

system.

CLASS XI

There will be two papers in the subject:

Paper I: Theory - 3 hours ….100 marks

Paper II: Practical - 3 hours ….100 marks

PAPER I -THEORY

Paper 1 shall be of 3 hours duration and be divided

into two parts.

Part I (30 marks): This part will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to the entire

syllabus.

Part II (70 marks): This part will be divided into

three Sections, A, B and C. Candidates are required to

answer three questions out of four from Section A and

two questions out of three in each of the Sections B

and C. Each question in this part shall carry 10

marks.

SECTIO� A

Basic Computer Hardware and Software

1. �umbers

Representation of numbers in different bases and

interconversion between them (e.g. binary, octal,

decimal, hexadecimal). Addition and subtraction

operations for numbers in different bases.

Introduce the positional system of representing

numbers and the concept of a base. Discuss the

conversion of representations between different

bases using English or pseudo code. These

algorithms are also good examples for defining

different functions in a class modelling numbers

(when programming is discussed). For addition

and subtraction use the analogy with decimal

numbers, emphasize how carry works (this will be

useful later when binary adders are discussed).

2. Encodings

(a) Binary encodings for integers and real

numbers using a finite number of bits (sign-

magnitude, twos complement, mantissa-

exponent notation). Basic operations on

integers and floating point numbers.

Limitations of finite representations.

Signed, unsigned numbers, least and most

significant bits. Sign-magnitude

representation and its shortcomings (two

representations for 0, addition requires extra

step); twos-complement representation.

Operations (arithmetic, logical, shift), discuss

the basic algorithms used for the arithmetic

operations. Floating point representation:

normalized scientific notation, mantissa-

exponent representation, binary point (discuss

trade-off between size of mantissa and

exponent). Single and double precision.

Arithmetic operations with floating point

numbers. Properties of finite representation:

overflow, underflow, lack of associativity

(demonstrate this through actual programs).

 176

(b) Characters and their encodings (e.g. ASCII,

Unicode).

Discuss the limitations of the ASCII code in

representing characters of other languages.

Discuss the Unicode representation for the

local language. Java uses Unicode, so strings

in the local language can be used (they can

be displayed if fonts are available) – a simple

table lookup for local language equivalents

for Latin (i.e. English) character strings may

be done. More details on Unicode are

available at www.unicode.org.

3. High level structure of computer

Block diagram of a computer system with details

of (i) function of each block and

(ii) interconnectivity and data and control flow

between the various blocks.

Develop the diagram by successive refinement of

blocks till all the following have been covered:

ALU, RAM, cache, the buses (modern computers

have multiple buses), disk (disk controller and

what it does), input/output ports (serial, parallel,

USB, network, modem, line-in, line-out etc.),

devices that can be attached to these ports (e.g

keyboard, mouse, monitor, CDROM, DVD, audio

input/output devices, printer, etc.). Clearly

describe the connectivity and the flow of data and

control signals.

4. Basic architecture of typical simple processor

and its assembly language

(a) Basic architecture of the 8085

microprocessor. Instruction set, addresses,

addressing modes, simple machine language

programs using the different addressing

modes, execution of machine language

programs, input and output.

The idea here is to discuss a concrete

microprocessor instead of an abstract

computer thus giving students a clearer

understanding of how a typical computer

works. The aim is not to know all details of

the 8085 microprocessor. The basic features

that must be covered are: (i) Structure of

memory; (ii) registers - A-register

(accumulator), general (B, C, D, E, H, L in

8-bit individual and paired 16-bit modes),

program counter, stack pointer, flag;

(iii) addressing modes (immediate, direct,

register, register-indirect); (iv) Instruction set

(data transfer, arithmetic, logical, conditional

and transfer of control, input/output).

Interrupts are not included. Since many free

simulators are available, the students should

actually write, run and observe what happens

when a machine language program runs.

Example, machine and assembly language

programs: evaluating simple expressions,

adding a sequence of numbers, finding the

minimum and/or maximum of a sequence of

numbers, using finding the minimum /

maximum to do sorting of a sequence of

numbers. In particular, discuss how the stack

can be used for calling and returning from

subprograms. Emphasize how data and

program look alike and depend on the

interpretation used.

(b) Assembly language of 8085, simple assembly

language programs, assembly process and

assembler.

Discussion of the assembly language should

be done along with the instruction set

(previous section). Emphasize how it is easier

to program in assembly language than in

machine language. Assembly process: symbol

table and its use in translating a program to

machine language. Macros are not included.

5. Propositional logic, hardware implementation,

arithmetic operations

(a) Propositional logic, well formed formulae,

truth values and interpretation of well formed

formulae, truth tables.

Propositional variables; the common logical

connectives (~ (not), ∧ (and), ∨ (or),

⇒ (implication), ⇔ (equivalence)); definition

of a well-formed formula (wff); representation

of simple word problems as wff (this can be

used for motivation); the values true and

false; interpretation of a wff; truth tables;

satisfiable, unsatisfiable and valid formulae.

(b) Logic and hardware, basic gates (AND, NOT,

OR) and their universality, other gates

(NAND, NOR, XOR); inverter, half adder,

full adder.

 177

Show how the logic in (a) above can be

realized in hardware in the form of gates.

These gates can then be combined to

implement the basic operations for arithmetic.

Tie up with the arithmetic operations on

integers discussed earlier in 2 (a).

6. Memory

(a) Memory - construction of a memory bit using

a flip-flop, D-flip-flop and its use in

constructing registers.

(b) Memory organization and access; parity;

memory hierarchy - cache, primary memory,

secondary memory.

The access time differences between the

different kinds of memory; size differences;

locality of reference and cache memory.

7. System and other software

Boot process. Operating system as resource

manager, command processing, files, directories

and file system. Commonly available programs

(editors, compilers, interpreters, word processors,

spread sheets etc.).

Boot process step-by-step from power on till the

prompt. In OS discuss: (i) all the resources

(processor, memory, i/o) that need to be managed

in a computer; (ii) what is meant by managing

these resources. Logical structure of data storage

on disk using logical disks, hierarchical

directories and files. Distinguish between

interpreters and compilers. In particular discuss

the javac and java programs.

SECTIO� B

The programming element in the syllabus is aimed at

algorithmic problem solving and not merely rote

learning of Java syntax. The Java version used should

be 1.5 or later. For programming, the students can use

any text editor and the javac and java programs or any

development environment: for example, BlueJ,

Eclipse, NetBeans etc. BlueJ is strongly recommended

for its simplicity, ease of use and because it is very

well suited for an ‘objects first’ approach.

8. Introduction to algorithmic problem solving

using Java

@ote that topics 9 to 13 will get introduced almost

simultaneously when classes and their definitions

are introduced.

9. Objects

(a) Objects as data (attributes) + behaviour

(methods or functions); object as an instance

of a class. Constructors.

Difference between object and class should be

made very clear. BlueJ (www.bluej.org) and

Greenfoot (www.greenfoot.org) can be used

for this purpose. Constructor as a special kind

of function; the new operator; multiple

constructors with different argument

structures; constructor returns a reference to

the object.

(b) Analysis of some real world programming

examples in terms of objects and classes.

Use simple examples like a calculator, date,

number etc. to illustrate how they can be

treated as objects that behave in certain well-

defined ways and how the interface provides a

way to access behaviour. Illustrate behaviour

changes by adding new functions, deleting old

functions or modifying existing functions.

10. Primitive values, wrapper classes, types and

casting

Primitive values and types: int, short, long, float,

double, boolean, char. Corresponding wrapper

classes for each primitive type. Class as type of

the object. Class as mechanism for user defined

types. Changing types through user defined

casting and automatic type coercion for some

primitive types.

Ideally, everything should be a class; primitive

types are defined for efficiency reasons; each

primitive type has a corresponding wrapper class.

Classes as user defined types. In some cases types

are changed by automatic coercion or casting –

e.g. mixed type expressions. However, casting in

general is not a good idea and should be avoided,

if possible.

 178

11. Variables, expressions

Variables as names for values; expressions

(arithmetic and logical) and their evaluation

(operators, associativity, precedence). Assignment

operation; difference between left hand side and

right hand side of assignment.

Variables denote values; variables are already

defined as attributes in classes; variables have

types that constrain the values it can denote.

Difference between variables denoting primitive

values and object values – variables denoting

objects are references to those objects. The

assignment operator = is special. The variable on

the lhs of = denotes the memory location while the

same variable on the rhs denotes the contents of

the location e.g. i=i+2.

12. Statements, scope

Statements; conditional (if, if-then-else, switch-

break, ?: ternary operator), looping (for, while-do,

do-while, continue, break); grouping statements in

blocks, scope and visibility of variables.

Describe the semantics of the conditional and

looping statements in detail. Evaluation of the

condition in conditional statements (esp.

difference between || and | and && and &).

Emphasize fall through in switch statement. Many

small examples should be done to illustrate

control structures. Printing different kinds of

patterns for looping is instructive. When number

of iterations are known in advance use the for

loop otherwise the while-do or do-while loop.

Express one loop construct using the others. For

e.g.:

for (<init>; <test>; <inc>) <stmt>; is equivalent

to:

(i) Using while

 <init>; while <test> {<stmt>; <inc> }

(ii) Using do-while

<init>; if !<test> do <stmt>; <inc> while

<test>;

@esting of blocks. Variables with block scope,

function scope, class scope. Visibility rules when

variables with the same name are defined in

different scopes.

13. Functions

Functions/methods (as abstractions for complex

user defined operations on objects), functions as

mechanisms for side effects; formal arguments

and actual arguments in functions; different

behaviour of primitive and object arguments.

Static functions and variables. The this variable.

Examples of algorithmic problem solving using

functions (various number theoretic problems,

finding roots of algebraic equations).

Functions are like complex operations where the

object is implicitly the first argument. Variable

this denotes the current object. Functions

typically return values, they may also cause side-

effects (e.g. change attribute values of objects) –

typically functions that are only supposed to cause

side-effects return void (e.g. Set functions). Java

passes argument by value. Illustrate the difference

between primitive values and object values as

arguments (changes made inside functions persist

after the call for object values). Static definitions

as class variables and class functions visible and

shared by all instances. @eed for static functions

and variables. Introduce the main method –

needed to begin execution.

14. Arrays, strings

(a) Structured data types – arrays (single and

multi-dimensional), strings. Example

algorithms that use structured data types (e.g.

searching, finding maximum/minimum,

sorting, solving systems of linear equations,

substring, concatenation, length, access to

char in string, etc.).

Storing many data elements of the same type

requires structured data types – like arrays.

Access in arrays is constant time and does not

depend on the number of elements. Structured

data types can be defined by classes – String.

Introduce the Java library String class and

the basic operations on strings (accessing

individual characters, various substring

operations, concatenation, replacement, index

of operations).

(b) Basic concept of a virtual machine; Java

virtual machine; compilation and execution of

Java programs (the javac and java programs).

 179

The JVM is a machine but built as a program

and not through hardware. Therefore it is

called a virtual machine. To run, JVM

machine language programs require an

interpreter (the java program). The advantage

is that such JVM machine language programs

(.class files) are portable and can run on any

machine that has the java program.

(c) Compile time and run time errors; basic

concept of an exception, the Exception class,

catch and throw.

Differentiate between compile time and run

time errors. Run time errors crash the

program. Recovery is possible by the use of

exceptions. Explain how an exception object

is created and passed up until a matching

catch is found. This behaviour is different

from the one where a value is returned by a

deeply nested function call. It is enough to

discuss the Exception class. Sub-classes of

Exception can be discussed after inheritance

has been done in Class XII.

SECTIO� C

15. Elementary data structures and associated

algorithms, basic input/ouput

(a) Class as a contract; separating implementation

from interface; encapsulation; private and

public.

 Class is the basic reusable unit. Its function

prototypes (i.e. the interface) work as a visible

contract with the outside world since others

will use these functions in their programs.

This leads to encapsulation (i.e. hiding

implementation information) which in turn

leads to the use of private and public for

realizing encapsulation.

(b) Interfaces in Java; implementing interfaces

through a class; interfaces for user defined

implementation of behaviour.

 Motivation for interface: often when creating
reusable classes some parts of the exact
implementation can only be provided by the
final end user. For example in a class that
sorts records of different types the exact
comparison operation can only be provided
by the end user. Since only he/she knows

which field(s) will be used for doing the
comparison and whether sorting should be in
ascending or descending order be given by
the user of the class.

 Emphasize the difference between the Java
language construct interface and the word
interface often used to describe the set of
function prototypes of a class.

(c) Basic data structures (stack, queue, dequeue);
implementation directly through classes;
definition through an interface and multiple
implementations by implementing the
interface. Basic algorithms using the above
data structures.

 A data structure is a data collection with well
defined operations and behaviour or
properties. The behaviour or properties can
usually be expressed formally using equations
or some kind of logical formulae. Consider
for e.g. a stack with operations defined as
follows:

 void push(Object o)

 Object pop()

 boolean isEmpty()

 Object top()

 Then, for example the LIFO property can be
expressed by (assume s is a stack):

 if s.push(o); o1=pop() then o ≡ o1

 What the rule says is: if o is pushed on the
stack s and then it is popped and o1 is the
object obtained then o, o1 are identical.

 Another useful property is:

 if s.isEmpty() == true then s.pop() = ERROR

 It says that popping an empty stack gives
ERROR.

 Similarly, several other properties can also be
specified. It is important to emphasize the
behavioural rules or properties of a data
structure since any implementation must
guarantee that the rules hold.

 Some simple algorithms that use the data
structures:

i) For stack: parentheses matching, tower of
Hanoi, nested function calls; solving a
maze.

ii) For queue: scheduling processes, printers,
jobs in a machine shop.

 180

(d) Basic input/output using Scanner and Printer

classes from JDK; files and their

representation using the File class, file

input/output; input/output exceptions. Tokens

in an input stream, concept of whitespace,

extracting tokens from an input stream

(StringTokenizer class).

 The Scanner class can be used for input of

various types of data (e.g. int, float, char etc.)

from the standard input stream or a file input

stream. The File class is used model file

objects in the underlying system in an OS

independent manner. Similarly, the Printer

class handles output. Only basic input and

output using these classes should be covered.

 Discuss the concept of a token (a delimited

continuous stream of characters that is

meaningful in the application program – e.g.

words in a sentence where the delimiter is the

blank character). This naturally leads to the

idea of delimiters and in particular

whitespace and user defined characters as

delimiters. As an example show how the

StringTokenizer class allows one to extract a

sequence of tokens from a string with user

defined delimiters.

(e) Concept of recursion, simple recursive

functions (e.g. factorial, GCD, binary search,

conversion of representations of numbers

between different bases).

 Many problems can be solved very elegantly

by observing that the solution can be

composed of solutions to ‘smaller’ versions of

the same problem with the base version

having a known simple solution. Recursion

can be initially motivated by using recursive

equations to define certain functions. These

definitions are fairly obvious and are easy to

understand. The definitions can be directly

converted to a program. Emphasize that any

recursion must have a base case. Otherwise,

the computation can go into an infinite loop.

Illustrate this by removing the base case and

running the program. Examples:

 (i) Definition of factorial:

factorial(0) = 1 //base case

factorial(n) = n * factorial(n-1)

(ii) Definition of GCD:

gcd(m, n) =

if (m==n) then n //base case

else if (m>n) then gcd(m-n, n)

else gcd(m, n-m)

(iii) Definition of Fibonacci numbers:

fib(0) = 1 //base case

fib(1) = 1 //base case

fib(n) = fib(n-1)+ fib(n-2)

 The tower of Hanoi is a very good example of

how recursion gives a very simple and elegant

solution where as non-recursive solutions are

quite complex. Discuss the use of a stack to

keep track of function calls. The stack can

also be used to solve the tower of Hanoi

problem non-recursively.

(f) Concrete computational complexity; concept

of input size; estimating complexity in terms

of functions; importance of dominant term;

best, average and worst case.

 Points to be given particular emphasis:

(i) Algorithms are usually compared along

two dimensions – amount of space (that is

memory) used and the time taken. Of the

two the time taken is usually considered

the more important. The motivation to

study time complexity is to compare

different algorithms and use the one that is

the most efficient in a particular situation.

(ii) Actual run time on a particular computer

is not a good basis for comparison since it

depends heavily on the speed of the

computer, the total amount of RAM in the

computer, the OS running on the system

and the quality of the compiler used. So

we need a more abstract way to compare

the time complexity of algorithms.

(iii) This is done by trying to approximate the

number of operations done by each

algorithm as a function of the size of the

input. In most programs the loops are

important in deciding the complexity. For

example in bubble sort there are two

nested loops and in the worst case the time

 181

taken will be proportional to n(n-1) where

n is the number of elements to be sorted.

Similarly, in linear search in the worst

case the target has to be compared with

all the elements so time taken will be

proportional to n where n is the number of

elements in the search set.

(iv) In most algorithms the actual complexity
for a particular input can vary. For
example in search the number of
comparisons can vary from 1 to n. This
means we need to study the best, worst
and average cases. Comparisons are
usually made taking the worst case.
Average cases are harder to estimate
since it depends on how the data is
distributed. For example in search, if the
elements are uniformly distributed it will
take on the average n/2 comparisons when
the average is taken over a statistically
significant number of instances.

(v) Comparisons are normally made for large
values of the input size. This means that
the dominant term in the function is the
important term. For example if we are
looking at bubble sort and see that time
taken can be estimated as: a*n

2
 +b*n + c

where n is the number of elements to be
sorted and a, b, c are constants then for
large n the dominant term is clearly n

2
 and

we can in effect ignore the other two
terms.

16. Implementation of algorithms to solve

problems

The students are required to do lab assignments in
the computer lab concurrently with the lectures.
Programming assignments should be done such
that each major topic is covered in at least one
assignment. Assignment problems should be
designed so that they are non-trivial and make the
student do algorithm design, address correctness
issues, implement and execute the algorithm in
Java and debug where necessary.

Self explanatory.

17. Social context of computing and ethical issues

(a) Intellectual property and corresponding laws

and rights, software as intellectual property.

(b) Software copyright and patents and the

difference between the two; trademarks;

software licensing and piracy.

(c) Free software foundation and its position on

software, open source software, various types

of licensing (e.g. GPL, BSD).

(d) Privacy, email etiquette, spam, security issues,

phising.

Social impact and ethical issues should be

discussed and debated in class. The important

thing is for students to realise that these are

complex issues and there are multiple points of

view on many of them and there is no single

‘correct’ or ‘right’ view.

PAPER II - PRACTICAL

This paper of three hours duration will be evaluated

internally by the school.

The paper shall consist of three programming

problems from which a candidate has to attempt any

one. The practical consists of the two parts:

(1) Planning Session

(2) Examination Session

The total time to be spent on the Planning session and

the Examination session is three hours. After

completing the Planning session the candidates may

begin with the Examination session. A maximum of

90 minutes is permitted for the Planning session.

However, if the candidates finish earlier, they are to

be permitted to begin with the Examination session.

Planning Session

The candidates will be required to prepare an

algorithm and a hand written Java program to solve

the problem.

 182

Examination Session

The program handed in at the end of the Planning

session shall be returned to the candidates. The

candidates will be required to key-in and execute the

Java program on seen and unseen inputs individually

on the Computer and show execution to the examiner.

A printout of the program listing, including output

results should be attached to the answer script

containing the algorithm and handwritten program.

This should be returned to the examiner. The program

should be sufficiently documented so that the

algorithm, representation and development process is

clear from reading the program. Large differences

between the planned program and the printout will

result in loss of marks.

Teachers should maintain a record of all the

assignments done as part of the practical work through

the year and give it due credit at the time of

cumulative evaluation at the end of the year. Students

are expected to do a minimum of twenty assignments

for the year.

Marks (out of a total of 100) should be distributed as
given below:

Continuous Evaluation

Candidates will be required to submit a work file
containing the practical work related to programming
assignments done during the year.

Programming assignments done throughout the year

(Internal evaluation) - 20 marks

Terminal Evaluation

Solution to programming problem on the computer

 - 60 marks

(Marks should be given for choice of algorithm and
implementation strategy, documentation, correct output
on known inputs mentioned in the question paper,
correct output for unknown inputs available only to the
examiner.)

Viva-voce - 20 marks

(Viva-voce includes questions on the following aspects
of the problem attempted by the student: the algorithm
and implementation strategy, documentation,
correctness, alternative algorithms or implementations.
Questions should be confined largely to the problem
the student has attempted).

 183

CLASS XII

There will be two papers in the subject:

Paper I: Theory- 3 hours …100 marks

Paper II: Practical- 3 hours …100 marks

PAPER I-THEORY

Paper 1 shall be of 3 hours duration and be divided

into two parts.

Part I (30 marks): This part will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to the entire

syllabus.

Part II (70 marks): This part will be divided into

three Sections, A, B and C. Candidates are required to

answer three questions out of four from Section A and

two questions out of three in each of the Sections B

and C. Each question in this part shall carry 10

marks.

SECTIO� A

1. Boolean Algebra

(a) Propositional logic, well formed formulae,

truth values and interpretation of well formed

formulae (wff), truth tables, satisfiable,

unsatisfiable and valid formulae. Equivalence

laws and their use in simplifying wffs.

Propositional variables; the common logical

connectives (~ (not), ∧ (and), ∨ (or), ⇒
(implication), ⇔ (biconditional); definition of

a well-formed formula (wff); representation of

simple word problems as wff (this can be used

for motivation); the values true and false;

interpretation of a wff; truth tables;

satisfiable, unsatisfiable and valid formulae.

Equivalence laws: commutativity of ∧, ∨;
associativity of ∧, ∨; distributivity; de

Morgan’s laws; law of implication (p ⇒ q ≡
~p ∨ q); law of biconditional ((p ⇔ q) ≡

(p ⇒ q) ∧ (q ⇒ p)); identity (p ≡ p); law of

negation (~ (~p) ≡ p); law of excluded middle

(p ∨~p ≡ true); law of contradiction(p∧~p ≡
false); simplification rules for ∧, ∨.

p ∨ p ≡ p p ∧ p ≡ p

p ∨ true ≡ true p ∧ true ≡ p

p ∨ false ≡ p p ∧ false ≡ false

p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p

The equivalence rules can be used to simplify

propositional wffs, for example:

1) (p ⇒ q) ∧ (p ⇒ r) to p ⇒ (q ∧ r)

2) ((p ⇒ q) ∧ p) ⇒ q to true

etc.

(b) Binary valued quantities; basic postulates of

Boolean algebra; operations AND, OR and

NOT; truth tables.

(c) Basic theorems of Boolean algebra (e.g.

Duality, idempotence, commutativity,

associativity, distributivity, operations with 0

and 1, complements, absorption, involution);

De Morgan’s theorem and its applications;

reducing Boolean expressions to sum of

products and product of sums forms;

Karnaugh maps (up to four variables).

Verify the laws of boolean algebra using truth

tables. Inputs, outputs for circuits like half and

full adders, majority circuit etc., SOP

representation; reduction using Karnaugh maps

and boolean algebra.

2. Computer Hardware

(a) Elementary logic gates (NOT, AND, OR,

NAND, NOR, XOR, XNOR) and their use in

circuits.

(b) Applications of Boolean algebra and logic

gates to half adders, full adders, encoders,

decoders, multiplexers, NAND, NOR as

universal gates.

Show the correspondence between boolean

functions and the corresponding switching

circuits or gates. Show that @A@D and @OR gates

 184

are universal by converting some circuits to

purely @A@D or @OR gates.

SECTIO� B

The programming element in the syllabus (Sections B

and C) is aimed at algorithmic problem solving and

not merely rote learning of Java syntax. The Java

version used should be 1.5 or later. For programming,

the students can use any text editor and the javac and

java programs or any development environment: for

example, BlueJ, Eclipse, NetBeans etc. BlueJ is

strongly recommended for its simplicity, ease of use

and because it is very well suited for an ‘objects first’

approach.

3. Programming in Java (Review of Class XI

Sections B and C)

@ote that items 4 to 8 will get introduced almost

simultaneously when classes and their definitions

are introduced.

4. Objects

(a) Objects as data (attributes) + behaviour

(methods or functions); object as an instance

of a class. Constructors.

Difference between object and class should be

made very clear. BlueJ (www.bluej.org) and

Greenfoot (www.greenfoot.org) can be

profitably used for this purpose. Constructor

as a special kind of function; the new

operator; multiple constructors with different

argument structures; constructor returns a

reference to the object.

(b) Analysis of some real world programming

examples in terms of objects and classes.

Use simple examples like a calculator, date,

number, etc. to illustrate how they can be

treated as objects that behave in certain well-

defined ways and how the interface provides a

way to access behaviour. Illustrate behaviour

changes by adding new functions, deleting old

functions or modifying existing functions.

5. Primitive values, wrapper classes, types and

casting

Primitive values and types: int, short, long, float,

double, boolean, char. Corresponding wrapper

classes for each primitive type. Class as type of

the object. Class as mechanism for user defined

types. Changing types through user defined

casting and automatic type coercion for some

primitive types.

Ideally, everything should be a class; primitive

types are defined for efficiency reasons; each

primitive type has a corresponding wrapper class.

Classes as user defined types. In some cases types

are changed by automatic coercion or casting –

e.g. mixed type expressions. However, casting in

general is not a good idea and should be avoided,

if possible.

6. Variables, expressions

Variables as names for values; expressions

(arithmetic and logical) and their evaluation

(operators, associativity, precedence). Assignment

operation; difference between left hand side and

right hand side of assignment.

Variables denote values; variables are already

defined as attributes in classes; variables have

types that constrain the values it can denote.

Difference between variables denoting primitive

values and object values – variables denoting

objects are references to those objects. The

assignment operator = is special. The variable on

the lhs of = denotes the memory location while the

same variable on the rhs denotes the contents of

the location e.g. i=i+2.

7. Statements, scope

Statements; conditional (if, if-then-else, switch-

break, ?: ternary operator), looping (for, while-do,

do-while, continue, break); grouping statements in

blocks, scope and visibility of variables.

Describe the semantics of the conditional and

looping statements in detail. Evaluation of the

condition in conditional statements (esp.

difference between || and | and && and &).

Emphasize fall through in switch statement. Many

small examples should be done to illustrate

control structures. Printing different kinds of

patterns for looping is instructive. When number

of iterations are known in advance use the for

loop otherwise the while-do or do-while loop.

Express one loop construct using the others. For

e.g.:

for (<init>; <test>; <inc>) <stmt>; is equivalent

to:

Using while

 185

<init>; while <test> {<stmt>; <inc> }

Using do-while

<init>; if !<test> do <stmt>; <inc> while <test>;

Nesting of blocks. Variables with block scope,

function scope, class scope. Visibility rules when

variables with the same name are defined in

different scopes.

8. Functions

Functions/methods (as abstractions for complex

user defined operations on objects), functions as

mechanisms for side effects; formal arguments

and actual arguments in functions; different

behaviour of primitive and object arguments.

Static functions and variables. The this variable.

Examples of algorithmic problem solving using

functions (various number theoretic problems,

finding roots of algebraic equations).

Functions are like complex operations where the

object is implicitly the first argument. Variable

this denotes the current object. Functions

typically return values, they may also cause side-

effects (e.g. change attribute values of objects) –

typically functions that are only supposed to cause

side-effects return void (e.g. Set functions). Java

passes argument by value. Illustrate the difference

between primitive values and object values as

arguments (changes made inside functions persist

after the call for object values). Static definitions

as class variables and class functions visible and

shared by all instances. @eed for static functions

and variables. Introduce the main method –

needed to begin execution.

9. Arrays, strings

(a) Structured data types – arrays (single and

multi-dimensional), strings. Example

algorithms that use structured data types (e.g.

searching, finding maximum/minimum,

sorting, solving systems of linear equations,

substring, concatenation, length, access to

char in string, etc.).

 Storing many data elements of the same type

requires structured data types – like arrays.

Access in arrays is constant time and does not

depend on the number of elements. Structured

data types can be defined by classes – String.

Introduce the Java library String class and

the basic operations on strings (accessing

individual characters, various substring

operations, concatenation, replacement, index

of operations). The Class StringBuffer should

be introduced for those applications that

involve heavy manipulation of strings.

(b) Basic concept of a virtual machine; Java

virtual machine; compilation and execution of

Java programs (the javac and java programs).

 The JVM is a machine but built as a program

and not through hardware. Therefore it is

called a virtual machine. To run, JVM

machine language programs require an

interpreter (the java program). The advantage

is that such JVM machine language programs

(.class files) are portable and can run on any

machine that has the java program.

(c) Compile time and run time errors; basic

concept of an exception, the Exception class,

catch and throw.

 Differentiate between compile time and run

time errors. Run time errors crash the

program. Recovery is possible by the use of

exceptions. Explain how an exception object

is created and passed up until a matching

catch is found. This behaviour is different

from the one where a value is returned by a

deeply nested function call. It is enough to

discuss the Exception class. Sub-classes of

Exception can be discussed after inheritance

has been done in Class XII.

(d) Class as a contract; separating implementation

from interface; encapsulation; private and

public.

 Class is the basic reusable unit. Its function

prototypes (i.e. the interface) work as a visible

contract with the outside world since others

will use these functions in their programs.

This leads to encapsulation (i.e. hiding

implementation information) which in turn

leads to the use of private and public for

realizing encapsulation.

(e) Interfaces in Java; implementing interfaces

through a class; interfaces for user defined

implementation of behaviour.

 186

 Motivation for interface: often when creating

reusable classes, some parts of the exact

implementation can only be provided by the

final end user. For example, in a class that

sorts records of different types the exact

comparison operation can only be provided

by the end user. Since only he/she knows

which field(s) will be used for doing the

comparison and whether sorting should be in

ascending or descending order be given by

the user of the class.

 Emphasize the difference between the Java

language construct interface and the word

interface often used to describe the set of

function prototypes of a class.

(f) Basic input/output using Scanner and Printer

classes from JDK; files and their

representation using the File class, file

input/output; input/output exceptions. Tokens

in an input stream, concept of whitespace,

extracting tokens from an input stream

(StringTokenizer class).

 The Scanner class can be used for input of

various types of data (e.g. int, float, char etc.)

from the standard input stream or a file input

stream. The File class is used model file

objects in the underlying system in an OS

independent manner. Similarly, the Printer

class handles output. Only basic input and

output using these classes should be covered.

 Discuss the concept of a token (a delimited

continuous stream of characters that is

meaningful in the application program – e.g.

words in a sentence where the delimiter is the

blank character). This naturally leads to the

idea of delimiters and in particular

whitespace and user defined characters as

delimiters. As an example show how the

StringTokenizer class allows one to extract a

sequence of tokens from a string with user

defined delimiters.

(g) Concept of recursion, simple recursive

functions (e.g. factorial, GCD, binary search,

conversion of representations of numbers

between different bases).

 Many problems can be solved very elegantly

by observing that the solution can be

composed of solutions to ‘smaller’ versions of

the same problem with the base version

having a known simple solution. Recursion

can be initially motivated by using recursive

equations to define certain functions. These

definitions are fairly obvious and are easy to

understand. The definitions can be directly

converted to a program. Emphasize that any

recursion must have a base case. Otherwise,

the computation can go into an infinite loop.

Illustrate this by removing the base case and

running the program. Examples:

(i) Definition of factorial:

factorial(0) = 1 //base case

factorial(n) = n * factorial(n-1)

(ii) Definition of GCD:

gcd(m, n) =

if (m==n) then n //base case

else if (m>n) then gcd(m-n, n)

else gcd(m, n-m)

(iii) Definition of Fibonacci numbers:

fib(0) = 1 //base case

fib(1) = 1 //base case

fib(n) = fib(n-1)+ fib(n-2)

 The tower of Hanoi is a very good example of

how recursion gives a very simple and elegant

solution where as non-recursive solutions are

quite complex. Discuss the use of a stack to

keep track of function calls. A stack can also

be used to solve the tower of Hanoi problem

non-recursively.

SECTIO� C

Inheritance, polymorphism, data structures,

computational complexity

10. Inheritance and polymorphism

Inheritance; base and derived classes; member

access in derived classes; redefinition of variables

and functions in subclasses; abstract classes; class

Object; protected visibility. Subclass

polymorphism and dynamic binding.

Emphasize the following:

- inheritance as a mechanism to reuse a class

by extending it.

 187

- inheritance should not normally be used just

to reuse some functions defined in a class but

only when there is a genuine specialization

(or subclass) relationship between objects of

the base class and that of the derived class.

- Allows one to implement operations at the

highest relevant level of abstraction.

- Freezes the interface in the form of abstract

classes with abstract functions that can be

extended by the concrete implementing

classes. For example, an abstract class Shape

can have an abstract function draw that is

implemented differently in the sub-classes like

Circle, Quadrilateral etc.

- how the exact function call at run time

depends on the type of the object referenced

by the variable. This gives sub-class

polymorphism. For example in the code

fragment:

 Shape s1=new Circle(), s2=new

Quadrilateral();

 s1.draw(); //the draw is the draw in Circle

 s2.draw(); //the draw is the draw in

Quadrilateral

 the two draw function invocations on s1, s2

invoke different draw functions depending on

the type of objects referenced by s1 and s2

respectively.

11. Data structures

(a) Basic data structures (stack, queue, dequeue);

implementation directly through classes;

definition through an interface and multiple

implementations by implementing the

interface. Basic algorithms using the above

data structures.

A data structure is a data collection with well

defined operations and behaviour or

properties. The behaviour or properties can

usually be expressed formally using equations

or some kind of logical formulae. Consider

for e.g. a stack with operations defined as

follows:

void push(Object o)

Object pop()

boolean isEmpty()

Object top()

Then, for example the LIFO property can be

expressed by (assume s is a stack):

if s.push(o); o1=pop() then o ≡ o1

What the rule says is: if o is pushed on the

stack s and then it is popped and o1 is the

object obtained then o, o1 are identical.

Another useful property is:

if s.isEmpty() == true then s.pop() = ERROR

It says that popping an empty stack gives

ERROR.

Similarly, several other properties can also be

specified. It is important to emphasize the

behavioural rules or properties of a data

structure since any implementation must

guarantee that the rules hold.

Some simple algorithms that use the data

structures:

(i) For stack: parentheses matching, tower of

Hanoi, nested function calls; solving a

maze.

(ii) For queue: scheduling processes,

printers, jobs in a machine shop.

(b) Recursive data structures: singly and doubly

linked lists, binary trees, tree traversals,

binary search tree. Algorithms using these

data structures (merge sort and quick sort,

searching).

Data structures should be defined as abstract

data types with a well defined interface (it is

instructive to define them using the Java

interface construct) – see the comments in (a)

above. Emphasize that algorithms for

recursive data structures are themselves

recursive and that algorithms are usually the

simplest and most elegant. The following

should be covered for each data structure:

Lists: insertion, deletion, reversal, appending

two lists, extracting an element or a sublist,

checking emptiness. Searching, sorting (by

quicksort and mergesort algorithms), binary

search in a sorted list.

Binary trees: apart from the definition the

following concepts should be covered:

external and internal nodes, height,

 188

completeness, balancing, Traversals

(pre, post and in-order). Implementation

using arrays and linked structures.

Binary search tree: insertion, deletion,

search.

12. Complexity and big O notation

Concrete computational complexity; concept of

input size; estimating complexity in terms of

functions; importance of dominant term; best,

average and worst case. Big O notation for

computational complexity; analysis of complexity

of example algorithms using the big O notation

(e.g. Various searching and sorting algorithms,

algorithm for solution of linear equations etc.).

Points to be given particular emphasis:

(i) Algorithms are usually compared along two

dimensions – amount of space (that is

memory) used and the time taken. Of the two

the time taken is usually considered the more

important. The motivation to study time

complexity is to compare different algorithms

and use the one that is the most efficient in a

particular situation.

(ii) Actual run time on a particular computer is

not a good basis for comparison since it

depends heavily on the speed of the computer,

the total amount of RAM in the computer, the

OS running on the system and the quality of

the compiler used. So we need a more

abstract way to compare the time complexity

of algorithms.

(iii) This is done by trying to approximate the

number of operations done by each algorithm

as a function of the size of the input. In most

programs the loops are important in deciding

the complexity. For example in bubble sort

there are two nested loops and in the worst

case the time taken will be proportional to

n(n-1) where n is the number of elements to be

sorted. Similarly, in linear search in the worst

case the target has to be compared with all

the elements so time taken will be

proportional to n where n is the number of

elements in the search set.

(iv) In most algorithms the actual complexity for a
particular input can vary. For example in
search the number of comparisons can vary
from 1 to n. This means we need to study the
best, worst and average cases. Comparisons
are usually made taking the worst case.
Average cases are harder to estimate since it
depends on how the data is distributed. For
example in search, if the elements are
uniformly distributed it will take on the
average n/2 comparisons when the average is
taken over a statistically significant number of
instances.

(v) Comparisons are normally made for large
values of the input size. This means that the
dominant term in the function is the important
term. For example if we are looking at bubble
sort and see that time taken can be estimated
as: a*n

2
 +b*n + c where n is the number of

elements to be sorted and a, b, c are constants
then for large n the dominant term is clearly
n
2
 and we can, in effect, ignore the other two

terms.

All the above motivates the big O notation. Let
f(n), g(n) be positive functions, then f(n) is said to
be O(g(n)) if there exists constants c, n0 such that
f(x)≤ c*g(n) whenever n>n0. What this means is
that g(n) asymptotically dominates f(n).
Expressing time complexity using the big O
notation gives us an abstract basis for comparison
and frees us from bothering about constants. So
the estimated time complexity a*n

2
+b*n+c is

O(n
2
).

Analyse the big O complexity of the algorithms
pertaining to the data structures in 11 (a) and (b)
above.

13. Implementation of algorithms to solve

problems

The students are required to do lab assignments in
the computer lab concurrently with the lectures.
Programming assignments should be done such
that each major topic is covered in at least one
assignment. Assignment problems should be
designed so that they are non-trivial and make the
student do algorithm design, address correctness
issues, implement and execute the algorithm in
Java and debug where necessary.

 Self explanatory.

 189

PAPER II - PRACTICAL

This paper of three hours duration will be evaluated

by the Visiting Examiner appointed locally and

approved by the Council.

The paper shall consist of three programming

problems from which a candidate has to attempt any

one. The practical consists of the two parts:

1. Planning Session

2. Examination Session

The total time to be spent on the Planning session and

the Examination session is three hours. After

completing the Planning session the candidates may

begin with the Examination session. A maximum of

90 minutes is permitted for the Planning session.

However, if the candidates finish earlier, they are to

be permitted to begin with the Examination session.

Planning Session

The candidates will be required to prepare an

algorithm and a hand written Java program to solve

the problem.

Examination Session

The program handed in at the end of the Planning

session shall be returned to the candidates. The

candidates will be required to key-in and execute the

Java program on seen and unseen inputs individually

on the Computer and show execution to the Visiting

Examiner. A printout of the program listing including

output results should be attached to the answer script

containing the algorithm and handwritten program.

This should be returned to the examiner. The program

should be sufficiently documented so that the

algorithm, representation and development process is

clear from reading the program. Large differences

between the planned program and the printout will

result in loss of marks.

Teachers should maintain a record of all the

assignments done as part of the practical work through

the year and give it due credit at the time of

cumulative evaluation at the end of the year. Students

are expected to do a minimum of twenty assignments

for the year.

Marks (out of a total of 100) should be distributed as

given below:

Continuous Evaluation

Candidates will be required to submit a work file

containing the practical work related to programming

assignments done during the year.

Programming assignments done throughout the year

(Internal evaluation) - 10 marks

Programming assignments done throughout the year

(Visiting Examiner) - 10 marks

Terminal Evaluation

Solution to programming problem on the computer

 - 60 marks

(Marks should be given for choice of algorithm and

implementation strategy, documentation, correct output

on known inputs mentioned in the question paper,

correct output for unknown inputs available only to the

examiner.)

Viva-voce - 20 marks

(Viva-voce includes questions on the following

aspects of the problem attempted by the student: the

algorithm and implementation strategy,

documentation, correctness, alternative algorithms or

implementations. Questions should be confined

largely to the problem the student has attempted).

�OTE:

Algorithm should be expressed clearly using any

standard scheme such as a pseudo code.

EQUIPME�T

There should be enough computers to provide for a

teaching schedule where at least three-fourths of the

time available is used for programming.

Schools should have equipment/platforms such that all

the software required for practical work runs properly,

i.e. it should run at acceptable speeds.

Since hardware and software evolve and change very

rapidly, the schools may have to upgrade them as

required. Following are the recommended

specifications as of now:

 190

The Facilities:

• A lecture cum demonstration room with a

MULTIMEDIA PROJECTOR/ an LCD and

O.H.P. attached to the computer.

• A white board with white board markers should

be available.

• A fully equipped Computer Laboratory that

allows one computer per student.

• Internet connection for accessing the World Wide

Web and email facility.

• The computers should have a minimum of 256

MB (512MB preferred) RAM and a PIII or higher

processor. The basic requirement is that it should

run the operating system and Java programming

system (Java compiler, Java runtime environment,

Java development environment) at acceptable

speeds.

• Good Quality printers.

Software:

• Any suitable Operating System can be used.

• JDK 1.5 or later.

• Documentation for the JDK version being used.

• A suitable text editor. A development

environment with a debugger is preferred (e.g.

BlueJ, Eclipse, NetBeans). BlueJ is recommended

for its ease of use and simplicity.

