
CURSORS AND TRIGGERS

Q1.
a) What is a cursor? What types of cursors are supported in PL/SQL? Explain Cursor attributes.
b) What is the purpose of cursor in PL/SQL? Name the types of cursors used in PL/SQL? Explain Cursor

attributes.
c) What is the importance of cursor for loop? How it simplifies the operation? Explain with suitable

example.
Answers:
(a) The oracle uses a work area of memory to execute SQL statements. This work area is also called context area
and data stored in this context area is called the Active Data Set. A cursor is a pointer to this context area.

Types of cursors:
There are two types of cursors: (i) Implicit Cursor (ii) Explicit Cursor

Implicit Cursor The oracle implicitly (internally or automatically) opens a cursor for each SQL statement. Since
the implicit cursors are opened and managed by oracle internally. So there is no need to open and manage the
cursors by the user. Implicit cursor attributes can be used to access information about status of last insert,
update, delete or single row select statement.

Explicit Cursor When individual records in a table have to be processed inside a PL/SQL code block a cursor is
used. This cursor will be declared and mapped to an SQL query in the Declare Section of the PL/SQL block and
used within the Executable Section. This cursor needs to be opened before the reading of the rows can be done,
after which the cursor is closed. Cursor marks the current position in an active set. A cursor thus created and
used is known as an Explicit Cursor.

Cursor Attributes Cursors have the following four attributes:
Attribute Name Description
%ISOPEN It is true if cursor is open and FALSE if cursor is not open or cursor is closed.

It is used only with Explicit Cursors.
%FOUND TRUE if at least one row was processed or a record was fetched successfully

from the opened cursor and FALSE otherwise.
%NOTFOUND TRUE if no row were processed or if record was not fetched successfully and

FALSE otherwise.
%ROWCOUNT It returns the number of rows/records processed by a cursor.

(b) The most commonly used loop with in a PL/SQL block is the FOR variable IN value construct. This is an
example of machine defined loop exit i.e. when all the values in FOR construct are exhausted looping stops.
Syntax: FOR variable IN cursorname
Here, the verb FOR automatically creates the variable of type %rowtype. Each record in the opened cursor
becomes a value for the memory variable of %rowtype. The FOR verb ensures that a row from the cursor is
loaded in declared variable and loop executes once. This goes until all the rows of the cursor have been loaded
into the variable. After this loop stops.
A CURSOR FOR LOOP automatically does the following:

• Implicitly declares its loop index as a %rowtype record.
• Open a cursor.
• Fetches a row from the active set for each loop iteration.
• Closes the cursor when all rows have been processed.

Cursor can be closed even when an exit or goto statement is used to leave the loop prematurely, or an exception
is raised inside the loop.
Example
The HRD manager has decided to raise the salary for all employees in department number 30 by 0.05.
Table Name:
Empno Deptno Sal
100 10 5000

101 30 6000
102 20 4000
103 30 5500

DECLARE
CURSOR c_emp IS
SELECT empno,sal
FROM emp
WHERE deptno=30;

BEGIN
FOR rec IN c_emp
LOOP

UPDATE emp
SET sal=rec.sal+(rec.sal * .05)
WHERE empno=rec.empno;

END LOOP;
COMMIT;

END;

The above PL/SQL code block will function as follows:
The block implicitly declares rec as belonging to type c_emp%rowtypw and retrieves all the records having
deptno 20.the salary for each record will be updated as required one by one and loaded into rec by the FOR
verb. The cursor closes automatically when all the records in the cursor have been processed. This situation is
sensed by FOR verb which causes the loop to exit.

(c) (i) Active Data Set (ii) SQL%ISOPEN (iii) Explicit (iv) END LOOP.

Q2. Answers the questions based on the table EMP given below:
Table: EMP

Column Name Data Type Size Description
Empno
Ename
Job
Sal
DeptNo
Commission

NUMBER
VARCHAR2
VARCHAR2
NUMBER
NUMBER
NUMBER

4
30
15
8,2
2
7,2

Employee’s Identification Number
Employee’s Name
Employee’s Designation
Employee’s Salary
Employee’s Department id
Employee’s Commission

(a) Write a PL/SQL code to display the Empno, Ename and Job of employees of DeptNo 10 with CURSOR
FOR LOOP Statement.

(b) Write a PL/SQL code to increase the salary of employees according to the following conditions:
Salary of DeptNo 10 employees increased by 1000.
Salary of DeptNo 20 employees increased by 500.
Salary of DeptNo 30 employees increased by 800.

Also store the EmpNo, old salary and new salary in a Table TEMP having three columns Empid, Old
and New.

(c) Create a trigger on EMP table which verify that no record has the Commission greater than salary of an
employee in table Emp.

(d) Suppose the table Result in the database, which has the following structure: Result (RollNo, Sub1, Sub2,
Sub3, Sub4, Total, Percentage). The RollNo and marks in each subject is stored in database. Write a PL/
SQL code to calculate the Total and Percentage of each student and update the database.

Ans.
(a) DECLARE

CURSOR C1 IS SELECT EMPNO, ENAME, JOB FROM EMP WHERE DEPTNO = 10;

 BEGIN
FOR REC IN C1 LOOP

DBMS_OUTPUT.PUT_LINE (‘EMPNO’|| REC.EMPNO);
DBMS_OUTPUT.PUT_LINE (‘ENAME’|| REC.ENAME);
DBMS_OUTPUT.PUT_LINE (‘JOB’|| REC.JOB);

END LOOP;
END;

(b) DECLARE
OLDSAL NUMBER;
NEWSAL NUMBER;
CURSOR C1 IS SELECT * FROM EMP;
REC C1%ROWTYPE;

BEGIN
OPEN C1;
LOOP

FETCH C1 INTO REC
EXIT WHEN C1%NOTFOUND;
SELECT SAL INTO OLDSAL FROM EMP WHERE EMPNO=REC.EMPNO;
IF REC.DEPTNO=10 THEN

UPDATE EMP SET SAL=SAL+1000 WHERE EMPNO=REC.EMPNO;
SELECT SAL INTO NEWSAL FROM EMP WHERE EMPNO=REC.EMPNO;

END IF;
IF REC.DEPTNO=20 THEN

UPDATE EMP SET SAL=SAL+500 WHERE EMPNO=REC.EMPNO;
SELECT SAL INTO NEWSAL FROM EMP WHERE EMPNO=REC.EMPNO;

END IF;
IF REC.DEPTNO=30 THEN

UPDATE EMP SET SAL=SAL+800 WHERE EMPNO=REC.EMPNO;
SELECT SAL INTO NEWSAL FROM EMP WHERE EMPNO=REC.EMPNO;

END IF;
INSERT INTO TEMP (EMPID, OLD, NEW)
VALUES (REC.EMPNO, OLDSAL, NEWSAL);

END LOOP;
CLOSE;

END;

(c) CREATE OR REPLACE TRIGGER UPDATE_CHECK
BEFORE UPDATE ON EMP FOR EACH ROW
BEGIN

IF :NEW.SAL<:OLD.SAL THEN
RAISE_APPLICATION_ERROR (-20001,’NEW SALARY CANNOT BE LESS
THAN OLD SALARY’);

END IF;
END;

(d) DECLARE
 T NUMBER;

PER NUMBER;
CURSOR C1 IS SELECT * FROM RESULT;
REC C1%ROWTYPE;

BEGIN
OPEN C1;
LOOP

FETCH C1 INTO REC;

EXIT WHEN C1%NOTFOUND;
T := REC.S1+REC.S2+REC.S3+REC.S4;
PER:=T/4;
UPDATE RESULT SET TOTAL=T, PERCENTAGE=PER WHERE RNO=REC.RNO;

END LOOP;
CLOSE C1;

END;

Q 3.
(a) What is trigger? Write the syntax for defining a trigger.
(b) Differentiate between row-level and statement-level triggers.
(c) What are the advantages/uses of using triggers?
(d) What is the default type of triggers?
(e) What is instead of trigger?

Answer
(a) A trigger is a stored procedure that is automatically fired (executed) when an INSERT, UPDATE or

DELETE statements issued against the associated table. The trigger is not explicitly called by user. A
trigger defines an action the database should take when some database related events occur. A trigger can
include SQL and PL/SQL statements to execute it as a unit and it can invoke other stored procedures.
Syntax:

CREATE [or REPLACE] TRIGGER trigger_name
 BEFORE | AFTER
 DELETE OR INSERT OR UPDATE [OF column_name,…] Triggering
 ON table_name event
 [FOR EACH ROW [WHEN condition]] Triggering Restriction

 DECLARE
 variable declaration;
 constant declaration;
 BEGIN
 PL/SQL subprogram body; Triggering Action
 [EXCEPTION
 exception PL/SQl block;]
 END;

(b) Row Level Trigger-> a row level trigger is fired each time a row in the table affected by the triggering
statement. For example, if an UPDATE statement updates multiple rows of a table, a row trigger is fired
once for each row affected by the UPDATE statement. If the triggering statement affects no rows, the
trigger is not executed at all. Row level triggers are created by using FOR EACH ROW clause in the
CREATE TRIGGER command.
Statement Level Trigger -> A statement trigger is fired once on behalf of the triggering statement,
independent of the number of rows the triggering statement affects. A statement trigger fires even if no
row affected. For example when an UPDATE command update 10 rows, the commands contained in the
trigger executed only once and not for every processed row. Statement level triggers are the default types
of triggers created by the CREATE TRIGGER command.

(c) Advantages of Triggers:
• To enforce complex integrity constraints.
• To prevent invalid transactions.
• To maintain replicate tables.
• To audit data modifications.
• To enforce complex security authorizations.
• To enforce complex business rules.

(d) Statement level triggers are the default types of triggers created by the CREATE TRIGGER command.
(e) An INSTEAD OF trigger is defined on a view rather than on a table. Such triggers are used to overcome

the restrictions placed by Oracle on any view, which is non-updateable. Prior to version 7.3, it was
impossible to issue DML statements- INSERT, DELETE, UPDATE- against any view which contained a
join. In oracle 8, INSTEAD OF triggers are defined on the same event as their table counterparts:
INSERT, DELETE and UPDATE.INSTEAD OF triggers give us the ability to perform DML against any
view definition. There are few restrictions on INSTEAD OF triggers:

• They are available only at row level.
• They can be applied only on views and not to tables.

Q 4.

a) Create a trigger, which verify that updated salary of employee must be greater than his/her previous salary.
b) Find the errors from the following PL/SQL code and rewrite the corrected code underlining the correction
made:

 CREATE ASWELLAS REPLACE TRIGGER DEPT_UP
 AFTER UPDATE ON EMP FOR EVERY ROW
 DECLARE
 v_num NUMBER (3);
 BEGIN
 SELECT COUNT (*) INTO v_num FROM EMP WHERE deptno=20;
 IF v_num > 5
 Raise_application_error (-20001,’Cannot Exceed 5’);
 END;

Answer

(a) CREATE OR REPLACE TRIGGER EMP_SUNDAY
BEFORE INSERT OR UPDATE OR DELETE ON EMP
BEGIN
 IF RTRIM (UPPER (TO_CHAR (SYSDATE,’DAY’))) = ‘SUNDAY’ THEN
 RAISE_APPLICATION_ERROR (-20002,’NO OPERATION CAN BE
 PERFORMED ON SUNDAY’);
 END IF;
END;

(b) CREATE OR REPLACE TRIGGER UPDATE_CHECK
BEFORE UPDATE ON EMP
BEGIN
 IF :NEW.SAL < :OLD.SAL THEN
 RAISE_APPLICATION_ERROR (-20003,’NEW SALARY CAN NOT BE
 LESS THAN OLD SALARY’);
 END IF;
END;

 (c) CREATE OR REPLACE TRIGGER DEPT_UP
 AFTER UPDATE ON EMP FOR EACH ROW
 DECLARE
 v_num NUMBER (3);
 BEGIN
 SELECT COUNT (*) INTO v_num FROM EMP WHERE deptno=20;
 IF v_num > 5 THEN
 Raise_application_error (-20001,’Cannot Exceed 5’);
 END IF;
 END;

