
TRIGGERS
Q. 1 Compare and contrast triggers and procedures.
Ans. Both, triggers and procedures are named PL/SQL blocks that are stored in the database schema.
The differences between trigger and procedures are as follows:
(i) Procedures need to be invoked explicitly whereas triggers are invoked automatically when a
triggering event take place.
(ii) Procedures can take place parameters whereas triggers can not.

Q.2 Compare and contrast triggers and constraints.
Ans. Both, triggers and constraints can be used to maintain database integrity. The differences between
the two are as follows:
(i) Triggers affect only those row insertions that take place after the trigger is created whereas a
constraints can be made to affect all rows in the table, even if they existed before the constraints was
created.
(ii) Triggers can be used to define custom constraints, which might not be possible through inbuilt
constraints.
(iii) Apart from enforcing constraints, triggers can also be used for database replication, automatic
column value generation etc.

Q.3 When do you create are INSTEAD OF triggers?
Ans. An INSTEAD OF trigger is one that Oracle fires instead of executing the triggering statement.
Thus triggers are created on views rather than tables. Thus when we want to enforce certain
functionality on views, we need to create INSTEAD OF triggers.

Q.4 Find the errors from the following PL/SQL code and rewrite the corrected code underlining
the correction made:
CREATE ASWELLAS REPLACE TRIGGER DEPT_UP
AFTER UPDATE ON DEPT FOR EVERY ROW
DECLARE
V_num NUMBER(3);
BEGIN

SELECT COUNT(*) INTO V_num FROM emp WHERE Deptno = ‘101’;
IF V_num >5

Raise_Application _Error (-20001, ‘Cannot exceed 5’);
END;
Ans :
CREATE OR REPLACE TRIGGER DEPT_UP
AFTER UPDATE ON DEPT FOR EACH ROW
DECLARE
V_num NUMBER(3);
BEGIN

SELECT COUNT(*) INTO V_num FROM emp WHERE Deptno = 101;
IF V_num >5 THEN

Raise_Application _Error (-20001, ‘Cannot exceed 5’);
END IF;
END;

Q.5 What is a trigger? Name two types of triggers available in PL/SQL.
Ans : A trigger is a stored procedure that defines an action that the database should take when some
database related event (such as insert, update, delete) occurs. Thus, database trigger is a set of PL/SQL
statements that executes each time an event (such as insert, update, delete) occurs on the database.

Two types of triggers available in PL/SQL are-
1. Row Level Triggers
 2. Statement Level Triggers

Q.6 Write the difference between a cursor and a trigger.
Ans :
A cursor is a temporary memory area that stores the result of execution of an SQL statement known as
result set, whereas a trigger is a PL/SQL block that is invoked automatically when a triggering SQL
statement executes.

A cursor is used to process the result of SQL query row by row and a trigger is used to enforce, a
constraints/ specific functionality linked to the execution of a DML statement.

Q.7 Create a trigger that raises an error if a user attempts to delete a row from the employee
table.
Ans.
CREATE OR REPLACE TRIGGER trg
BEFORE DELETE ON emp
FOR EACH ROW
BEGIN

RAISE_APPLICATION_ERROR (-20000, ‘CAN NOT DELETE’);
END;

Q.8 What are mutating tables and constraining tables? How are these used by row level
triggers?
Ans. Mutating table is the one that is currently being modified by a DML statement, whereas a
constraining table is the one that defines the domain for the values of a foreign key column of the
mutating table.
A trigger can not read from or modify any of the values of the mutating table but can not read from or
modify the non key values of the constraining table.

Q.9 Write statements to do following:
 (i) Delete trigger chkCost
 (ii) List the names of triggers that you created.
 (iii) Disable trigger dispCost.
 (iv) Enable trigger highCost
 (v) You created a trigger, which was not compiled successfully. Write statement to view the list of
errors.

Ans.
(i) DROP TRIGGER chkCost;
(ii) SELECT TRIGGER_NAME FROM USER_TRIGGERS;
(iii) ALTER TRIGGER dispCost DISABLE;
(iv) ALTER TRIGGER highCost ENABLE;
(v) SHOW ERRORS <Trigger name>

Q.10 Explain following trigger parts with example.
(i) Triggering type
(ii) Triggering event

(iii) Trigger restriction
(iv) Trigger body

Ans.
(i) Triggering type : Trigger type can be BEFORE or AFTER and decides whether is the trigger fired
before or after the triggering statement.
(ii) Triggering event: Triggering event can be INSERT or UPDATE or DELETE or a combination of
all, and decides which DML statements fire the trigger.
(iii)Trigger restriction: The condition written with the WHEN clause, which must evaluate to true
before if the trigger is to be fired defines the trigger restriction.
(iv) Trigger body : The PL/SQL code associated with the trigger that is executed when the triggering
event occurs is referred to as trigger body.

Q. 11 Consider the table definitions:
INVENTORY (itemcode, category, name, stock, unitprice, reorder_level)
BILL (billno, itemcode, saledate, unitsold)

Create a trigger that reduces stock by the number of units sold each time a purchase is made (i.e.
a record is added to the table BILL) provided there is enough stock in the inventory. The trigger
should not allow the insertion if this condition does not hold good.
Ans.
CREATE OR REPLACE TRIGGER trg
AFTER INSERT ON BILL
FOR EACH ROW
DECLARE

Nstock INVENTORY.stock%TYPE;
BEGIN

SELECT stock INTO Nstock FROM INVENTORY
 WHERE itemcode = :NEW.itemcode;
IF :NEW.unitsold<Nstock THEN

UPDATE INVENTORY SET stock = stock - : NEW.unitsold
WHERE itemcode = :NEW.itemcode;

ELSE
RAISE_APPLICATION_ERROR (-20000, ‘NOT ENOUGH STOCK’);

END IF;
END;

Q.12 Create a trigger that prints the change in salary every time salary of an employee is
changed.
Ans.
CREATE OR REPLACE TRIGGER trg
BEFORE DELETE OR INSERT OR UPDATE ON emp
FOR EACH ROW
WHEN (:NEW.empno>0)
DECLARE

SAL_DIFF NUMBER;
BEGIN

SAL_DIFF : = :NEW.sal - :OLD.sal;
DBMS_OUTPUT.PUT (‘DIFFERENCE’ || SAL_DIFF);

END;

Q. 13 Create a trigger that displays the number of employees after every delete in emp table.
Ans.
CREATE OR REPLACE TRIGGER trg

AFTER DELETE ON emp
FOR EACH ROW
DECLARE

N NUMBER;
BEGIN

SELECT COUNT(*) INTO N FROM emp;
DBMS_OUTPUT.PUT (‘THERE ARE NOW’ || N || ‘EMPLOYEES’);

END;

Q. 14 Write PL/SQL code to create two statement level triggers B_D_Flight and A_D_Flight
before and after DELETE statement respectively on the table Flight which displays the message
‘Ready for Deletion’ and ‘Records Deleted’ respectively.
Ans :
CREATE OR REPLACE TRIGGER B_D_Flight

BEFOR DELETE ON Flight
BEGIN

DBMS_OUTPUT.PUT_LINE (‘Ready for Deletion’);
END;

CREATE OR REPLACE TRIGGER A_D_Flight
AFTER DELETE ON Flight
BEGIN

DBMS_OUTPUT.PUT_LINE (‘Records Deleted’);
END;
Q.15 : Differentiate between Row –level and Statement level triggers in PL/SQL.

OR
Q. Differentiate between Row –level and Statement level triggers in PL/SQL. Give example of
each trigger.
Ans : The row level triggers fire once for every single row processed by the DML statement
(Insert/Update/Delete). If the DML statement (Insert/Update/Delete) for which the trigger has been
defined, affects 20 rows then the row level trigger will get executed twenty times i.e. once for each
row.

The statement level trigger is fired once on behalf of triggering statement, regardless of the number of
rows affected in the table. If the DML statement (Insert/Update/Delete) for which the trigger has been
defined, affects 20 rows then the statement level trigger will get executed only once.

A row level trigger is identified by the FOR EACH ROW clause in the CREATE TRIGGER
command. The omission of FOR EACH ROW clause in the CREATE TRIGGER command, makes the
trigger the statement level trigger.

Example of Row Level Trigger –
CREATE OR REPLACE TRIGGER DEPT_UP
AFTER UPDATE ON DEPT FOR EACH ROW
DECLARE
V_num NUMBER(3);
BEGIN

SELECT COUNT(*) INTO V_num FROM emp WHERE Deptno = 101;
IF V_num >5 THEN

Raise_Application _Error (-20001, ‘Cannot exceed 5’);
END IF;
END;

Example of Row Level Trigger –
CREATE OR REPLACE TRIGGER B_D_Flight

BEFOR DELETE ON Flight

BEGIN
DBMS_OUTPUT.PUT_LINE (‘Ready for Deletion’);

END;

Q.16 Write PL/SQL code to create trigger to display the HELLO message before insert
operation on EMPLOYEE table.
Ans :

CREATE OR REPLACE TRIGGER Insert_Emp
BEFOR INSERT ON EMPLOYEE
FOR EACH ROW
BEGIN

DBMS_OUTPUT.PUT_LINE (‘HELLO’);
END;

