Comprehensive Test Series-01
 (Application of Derivatives)

XII

TIME: 30 min
MM: 25

General Instructions:

All Questions are compulsory.
$>$ Use of calculator is not permitted.
Q. 1 Find the equation of all lines having slope 2 and being tangent to the curve $y+\frac{2}{x-3}=0$.
Q. 2 Find point on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are (i) parallel to x -axis (ii) parallel to y -axis.
Q. 3 Find the point on the curve $\mathrm{y}=(\mathrm{x}-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.
Q. 4 For the curve $y=4 x^{3}-2 x^{5}$, Find all the points at which the tangent passes through the origin.
Q. 5 Find the point on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x -axis.
Q. 6 Find the equation of the normal at the point $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ for the curve $\mathrm{ay}^{2}=\mathrm{x}^{3}$.
Q. 7 Prove that the curves $\mathrm{x}=\mathrm{y}^{2}$ and $\mathrm{xy}=\mathrm{k}$ cut at right angles if $8 \mathrm{k}^{2}=1$.
Q. 8 Find the equations of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.

