Comprehensive Test Series-04
 (Application of Derivatives) XII

TIME: 1hr.
MM: 30
General Instructions:
> All Questions are compulsory.
$>$ Use of calculator is not permitted.
Q. 1 The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. How fast is the area decreasing when two equal sides are equal to the base?
Q. 2 The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 12 cm ?
Q. 3 A men of height 2 meters walks at a uniform speed of 5 kilometers/hour away from a lamp post which is 6 meters high. Find the rate at which the length of his shadow increases.
Q. 4 A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan ^{-1}(0.5)$. Water is poured into it at a constant rate of 5 cubic per minute. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 10 m .
Q. 5 Water is leaking from a conical funnel at rate of $5 \mathrm{~cm}^{3} / \mathrm{sec}$. If the radius of the base of the funnel is 10 cm and its height is 20 cm , find the rate at which the water level is dropping when it is 5 cm from the top.
Q. 6 A man is walking at the rate of $4.5 \mathrm{~km} / \mathrm{hr}$ towards the foot of the tower 120 m high. At what rate is he approaching the top of the tower when he is 50 m away from the tower?
Q. 7 The radius of a circular soap bubble is increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Find the rate of increase of its volume when the radius is 5 cm .
Q. 8 The surface of a spherical balloon is increasing at the rate of $2 \mathrm{~cm}^{2} / \mathrm{sec}$. Find the rate of change of its volume when its volume when its radius is 6 cm .
Q. 9 Find the point on the curve $y^{2}=8 x$ for which the abscissa and ordinate change at the same rate.
Q. 10 At what point of the ellipse $16 x^{2}+9 y^{2}=400$, does the ordinate decrease at the same rate at which abscissa increases?

