Comprehensive Test Series-10
 (Application of Derivatives)
 XII

TIME: 1hr.

MM: 50

General Instructions:

$>$ All Questions are compulsory.
$>$ Use of calculator is not permitted.
Q. 1 An open box with a square base is to be made out of given quantity of card board of area C^{2} square units. Show that the maximum volume of box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.
Q. 2 Water is dripping out from a conical funnel of semi-vertical angle $\frac{\pi}{4}$ at the uniform rate of 2 $\mathrm{cm}^{2} / \mathrm{sec}$ in its surface area through a tiny hole at the vertex in the bottom. When the slant height of the water is 4 cm , find the rate of decrease of the slant height of the water.
Q. 3 Determine the intervals in which the function $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21$ is decreasing or increasing?
Q. 4 Find the maximum and minimum values of $f(x)=x+\sin 2 x$ in the interval $[0,2 \pi]$.

Q5. Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles if $k^{2}=512$
Q. 6 Use differentials find the approximate value.
$\left(\frac{17}{81}\right)^{\frac{1}{4}}$
Q. 7 A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is $8 \mathrm{~m}^{3}$. If building of tank costs Rs. 70 per sq. metres for the base and Rs 45 per m^{2} for sides. What is the cost of least expensive tank?
Q. 8 A window is in the form of a rectangular surmounted by a semi-circular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light though the whole opening.
Q. 9 Show that the height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and having semi-vertical angle α is one-third that of the cone and the greatest volume of cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.
Q. 10 Show that the normal at any point θ to the curve
$\mathrm{x}=\mathrm{a} \cos \theta+\mathrm{a} \theta \sin \theta$
$\mathrm{y}=\mathrm{a} \sin \theta-\mathrm{a} \theta \cos \theta$ is at a constant distance from the origin.
Q. 11 Find the both the maximum and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the interval [1,4]
Q. 12 Find the equations of tangent and normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$

