Comprehensive Test Series-02
 (Matrices)
 XII

TIME: 30 min .
MM: 25

General Instructions:

> All Questions are compulsory.
$>$ Use of calculator is not permitted.
Q. 1 Construct a 2×3 matrix whose elements a_{ij} are given by
$\mathrm{a}_{\mathrm{ij}}=\left\{\begin{array}{l}2 \mathrm{i}+\mathrm{j}, \text { when } \mathrm{i}<\mathrm{j} . \\ 4 \mathrm{i} . \mathrm{j}, \text { When } \mathrm{i}=\mathrm{j} \\ \mathrm{i}+2 \mathrm{j} \text { when } \mathrm{i}>\mathrm{j}\end{array}\right.$
Q. 2 Find the values of x, y and z if $\left[\begin{array}{l}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
Q. 3 Find the value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d from the following equations. $\left[\begin{array}{ll}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{ll}4 & -3 \\ 11 & 24\end{array}\right]$
Q. 4 Construct a 3×4 matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ whose elements a_{ij} are given by
$\mathrm{a}_{\mathrm{ij}}=\frac{|-3 i+j|}{2}$
Q. $5 \quad$ if $\left[\begin{array}{lll}x+3 & z+4 & 2 y-7 \\ 4 x+6 & a-1 & 0 \\ b-3 & 3 b & z+2 c\end{array}\right]=\left[\begin{array}{lll}0 & 6 & 3 y-2 \\ 2 x & -3 & 2 c+2 \\ 2 b+4 & -21 & 0\end{array}\right] \quad$ obtain the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z .
Q. 6 A matrix has 36 elements. What are the possible orders it can have? What, if it has 7 elements?
Q. 7 For what value of x and y are the following matrices equal?
$\mathrm{A}=\left[\begin{array}{ll}2 x+1 & 2 y \\ 0 & y^{2}-5 y\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}x+3 & y^{2}+2 \\ 0 & -6\end{array}\right]$
Q. 8 Out of the given matrices choose that matrix which is a scalar matrix. Give reason.
(a) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

