Comprehensive Test Series-03
 (Matrices)
 XII

TIME: 1hr.
MM: 30

General Instructions:

$>$ All Questions are compulsory.
$>$ Use of calculator is not permitted.
Q. 1 Construct a 4×3 matrix whose elements a_{ij} are given by
(i) $\mathrm{a}_{\mathrm{ij}}=2 \mathrm{i}+\frac{i}{j}$
(ii) $\mathrm{a}_{\mathrm{ij}}=\frac{i-j}{i+j}$
Q. 2 Find x, y, a and b if $\left[\begin{array}{lll}2 x-3 y & a-b & 3 \\ 1 & x+4 y & 3 a+4 b\end{array}\right]=\left[\begin{array}{lll}1 & -2 & 3 \\ 1 & 6 & 29\end{array}\right]$
Q. 3 If $A=\left[\begin{array}{ll}1 & 0 \\ -1 & 7\end{array}\right]$, find K so that $A^{2}=8 A+K I$
Q. 4 Find X and Y if
$2 \mathrm{X}-\mathrm{Y}=\left[\begin{array}{lll}5 & -5 & 0 \\ -2 & 1 & 1\end{array}\right], \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{lll}2 & 3 & 0 \\ 4 & 0 & -1\end{array}\right]$
Q. 5 If $A=\left[\begin{array}{ll}9 & 1 \\ 7 & 8\end{array}\right], B=\left[\begin{array}{cc}1 & 5 \\ 7 & 12\end{array}\right]$ find matrix C such that $5 \mathrm{~A}+3 \mathrm{~B}+2 \mathrm{C}$ is a null matrix.
Q. 6 Evaluate $\left\{\left[\begin{array}{ll}1 & 3 \\ -1 & -4\end{array}\right]+\left[\begin{array}{ll}3 & -2 \\ -1 & 1\end{array}\right]\right\}\left[\begin{array}{ll}1 & 5 \\ 2 & 6\end{array}\right]$
Q. 7 If $\mathrm{R}(\theta)=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, show that $\mathrm{R}(\theta) . \mathrm{R}(\phi)=\mathrm{R}(\theta+\phi)$
Q. 8 Find the matrix X, for which $\left[\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right] X=\left[\begin{array}{ll}1 & -2 \\ 1 & 3\end{array}\right]$.
Q. 9 Use matrix multiplication to divide Rs. 30,000 in two parts such that the total annual interest at 9% on the first part and 11% on the second part amounts Rs. 3060.
Q. 10 Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$ using elementary row transformations.

