Comprehensive Test Series-04
 (Matrices)
 XII

TIME: 1.5hr
MM: 50

General Instructions:

All Questions are compulsory.
$>$ Use of calculator is not permitted.
Q. 1 Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by

$$
a_{i j}=\left\{\begin{array}{l}
i-j, \text { if } i \geq j . \\
i+j \text { if } i<j
\end{array}\right.
$$

Q. 2 If $A=\left[\begin{array}{ll}0 & 0 \\ 5 & 0\end{array}\right]$, find A^{16}.
Q. 3 If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, prove by induction that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$

Where I is the unity matrix of order 2 and n is a positive integer.
Q. 4 Find the matrix such that $\left[\begin{array}{ll}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] \quad A=\left[\begin{array}{lll}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$
Q. 5 If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, prove that $\mathrm{A}^{\mathrm{n}}=\left[\begin{array}{ll}2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1}\end{array}\right]$, or all positive integers in .
Q. 6 Find the integral value of x if $\left[\begin{array}{lll}x & 4 & -1\end{array}\right]\left[\begin{array}{lll}2 & 1 & -1 \\ 1 & 0 & 0 \\ 2 & 2 & 4\end{array}\right]\left[\begin{array}{lll}x & 4 & -1\end{array}\right]^{t}=0$.
Q. 7 Find the inverse of the following metrics, if it exist using elementary row operations.
$\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
Q .8 If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, find a, b so that $\mathrm{A}^{2}=\mathrm{a} A+\mathrm{b} 1$.
Q 9. Find a and b if $\left\{3\left[\begin{array}{lll}2 & 1 & -3 \\ 1 & 4 & 2\end{array}\right]-2\left[\begin{array}{lll}1 & -2 & 0 \\ 2 & -1 & 3\end{array}\right]\right\}\left[\begin{array}{l}2 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$.
Q. 10 Given $\mathrm{A}=\left[\begin{array}{ll}3 & -1 \\ 1 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{l}1 \\ -2\end{array}\right]$, find the matrix X such that $A X=3 B+2 C$.

