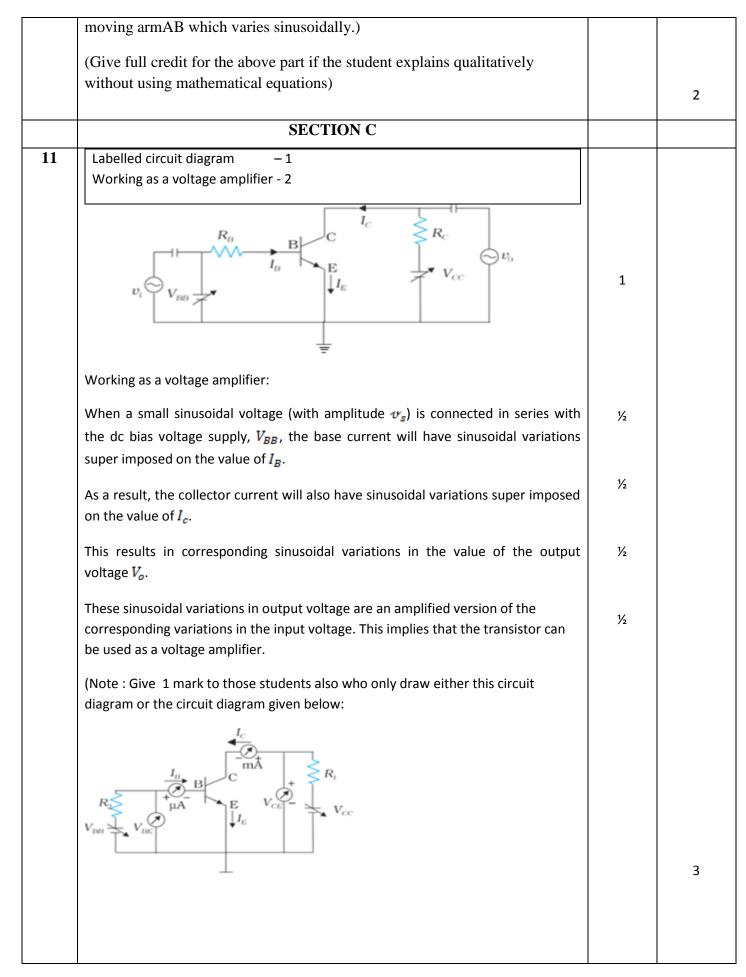
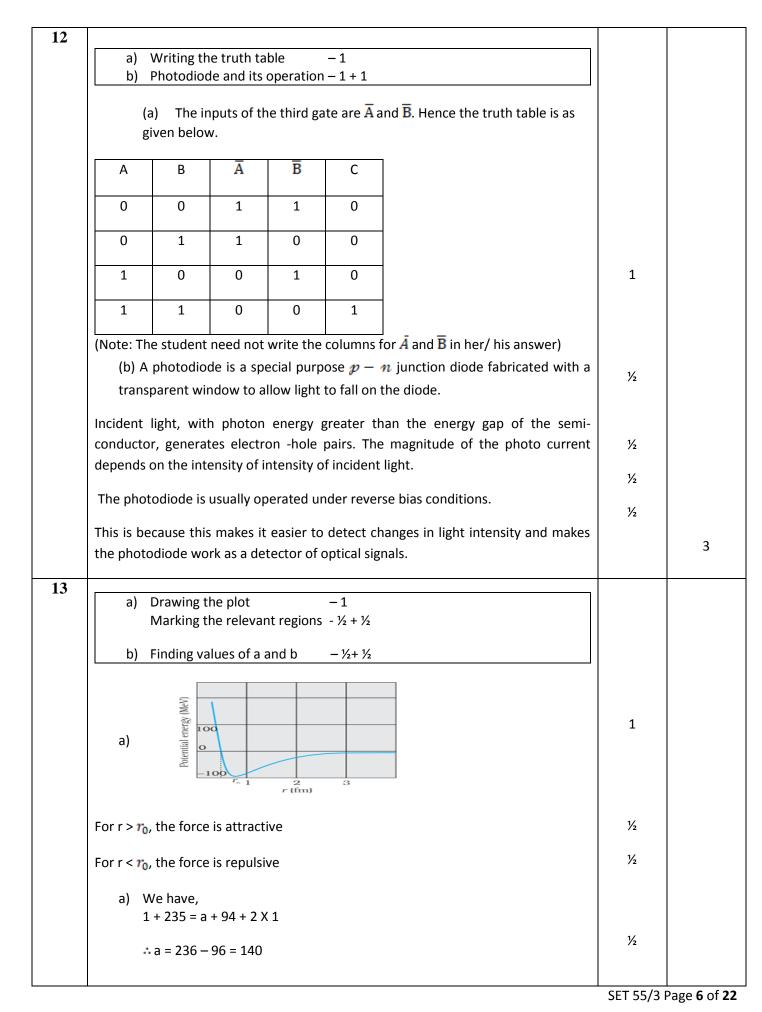
MARKING SCHEME(COMPARTMENT) 2018

SET 55/3

Q.NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
1	The power of a lens equals to the reciprocal of its focal length(in meter).	1/2	
	Also accept	1/2	
	$p = \frac{1}{f(meter)}$		
	Do not deduct mark if student does not write the word meter.		
	(Alternatively		1
	Power of a lens is the ability of conversion /diversion of the rays incident on the lens.)		
	SI Unit: Dioptre(D)		
2	position on screen	1	1
3	Normal : Circular	1/2	
	At an angle of 30^0 it will follow helical path	1/2	1
4	$V = \sqrt{\frac{2eV}{m}}$	1	1
5	From few MHz to 30-40 MHz	1	1
	SECTION B		


SET 55/3 Page 1 of 22

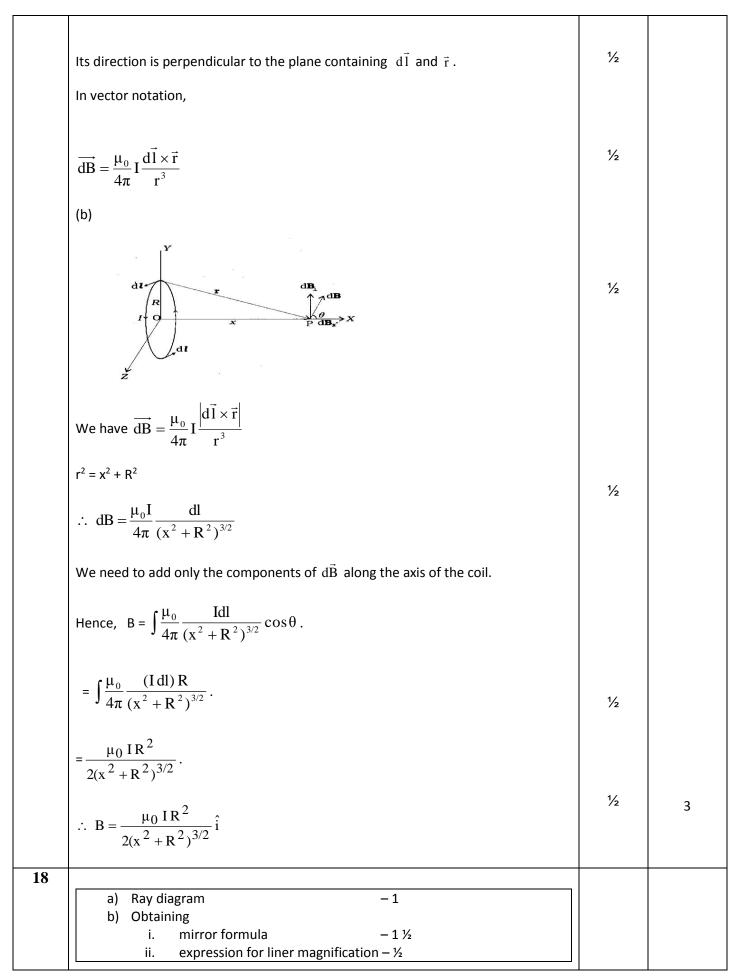
(1	
6	(a) One use1(b) One example each $\frac{1}{2} + \frac{1}{2}$		
	(a) used to destroy cancer cells	1	
	(b) (i)The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current.	1/2	
	(ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current.	1/2	
	(Alternatively		
	A circuit, having no capacitor in it, and carrying a current has conduction current but no displacement current.)		
7			2
	Formula1/2(i) Frequency of first case1/2(ii) Frequency of second case1/2Ratio1/2		
	We have		
	$h\nu = E_f - E_i$ $= \frac{E_0}{n_f^2} - \frac{E_0}{n_i^2}$	Y₂	
	$(i) hv_1 = E_0(\frac{1}{1^2} - \frac{1}{2^2}) = E_0 \times \frac{3}{4}$	1/2	
	$(ii) hv_2 = E_0(\frac{1}{2^2} - \frac{1}{\infty^2}) = E_0 \times \frac{1}{4}$	1/2	
	$\therefore \frac{v_1}{v_2} = 3$	¥₂	2
8			
	Finding the Work function 1		


SET 55/3 Page **2** of **22**

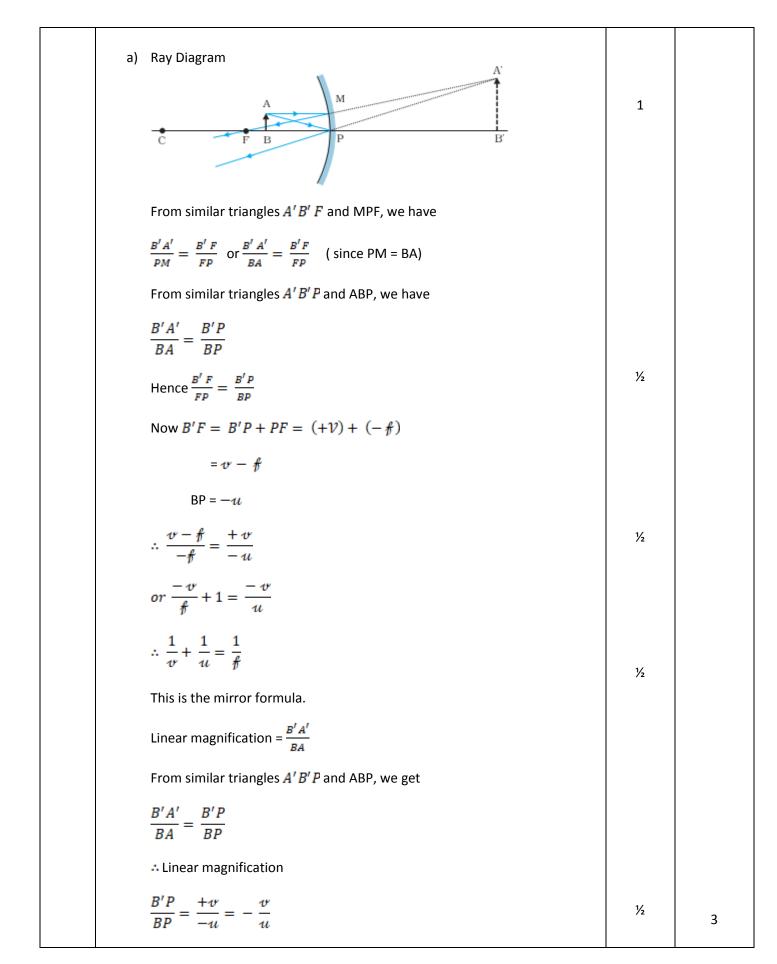
We have		
$W = h v_0$	1/2	
$= 6.63 \times 10^{-34} \times 8 \times 10^{14} J$		
$=\frac{6.63\times10^{-20}\times8}{1.6\times10^{-19}}$		
= 3.315 eV	1/2	
We have		
$hv = W + eV_s$	1/2	
=(3.315+3.3)eV		
$\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$		2
$=1.596 \times 10^{15} Hz$		2
	1/2	
OR		
Calculating		
(i) Energy of a photon $\frac{1}{2} + \frac{1}{2}$ (ii) Number of photons emitted $\frac{1}{2} + \frac{1}{2}$		
Energy of photon= $h\nu$		
	1/2	
$= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$		
$=3.978 \times 10^{-19} J$	1/2	
$\cong 2.49 eV$	/2	
Number of photons emitted per second = $\frac{power}{energy of photon}$	1/2	
$=\frac{2.0\times10^{-3} J/s}{3.978\times10^{-19} J}$	1/2	
$=5.03\times10^{15}$ photons / sec ond		
-		
	1	1

9	(a)Definition1/2Relation1/2		
	(b) Identification of A and B $\frac{1}{2}$		
		1/	
	(a) Measure of the response of magnetic material to an external magnetic field. Also accept	1/2	
	$\chi = \frac{ M }{ H }$		
	We have	1/2	
	$\chi = (\mu_r - 1)$	1/2	
	(b) 0.96 : Diamagnetic		
	500 : Ferromagnetic	1/2	
			2
10			
	SHM nature of oscillation of the wire AB 1/2		
	Expression for instantaneous magnetic flux ¹ / ₂		
	Expression for instantaneous induced emf1/2Qualitative explanation1/2		
	The wire AB would oscillate in a simple harmonic way	1/2	
	We can write		
	$x = -a\cos\omega t$		
	(as x = -a at t = 0)		
	Therefore Instantaneous magnetic Flux	1/2	
	$\phi(t) = Blx \qquad (l = AB)$		
	Instantaneous induced emf		
	$e(t) = -\frac{d\phi}{dt} = aBl\omega \sin \omega t$	1∕₂	
	The induced emf, therefore varies with time sinusoidally.	1/2	
	(Alternatively		
1	Arm AB executes SHM under the influence of restoring force developed in		
	This The excedues of the influence of restoring force developed in		

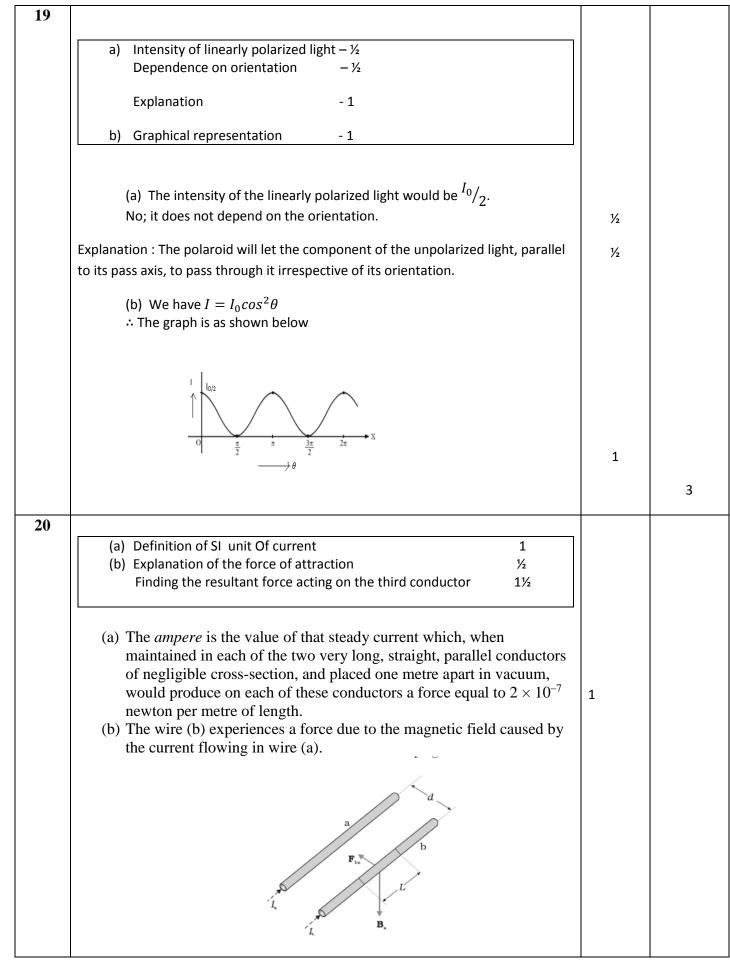
SET 55/3 Page 5 of 22

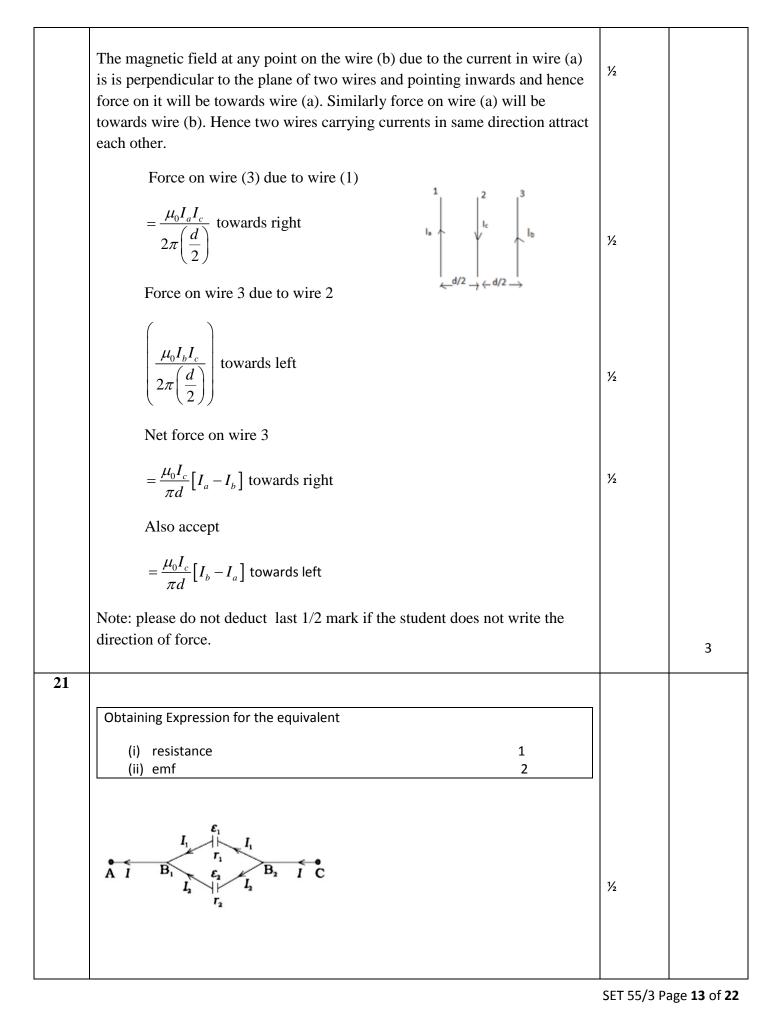

Also			
0 + 92 = 54 + b +	- 2 X 0		
∴ b = 92 – 54 = 3	8	1∕₂	3
14			
Statement of equation	with explanation of symbols – 1		
Expression for			
i. Planck's consta ii. Work function	nt - 1 - 1		
	- 1		
Einstein's photoelectric	equation is		
$hv = hv_0 \left(=W\right) + \frac{1}{2}m$	v_{max}^2	1/2	
v = frequency of inci	dent light		
$v_0 = threshold freque$	ency of photo sensitive material		
W = work function			
$\frac{1}{2} m v_{max}^2 = max.kine$	tic energy of the emitted photoelectrons	1∕₂	
(Also accept if the stude	nt writes		
$\hbar v = W + eV_s$			
W = v	vork function of photosensitive material		
	V_s = Stopping Potential)		
From Einstein's photoele	ectric equation, we have		
	$hv = W + \frac{1}{2} m v_{max}^2$		
	$\therefore v_{max}^2 = \frac{2}{m} (hv - W)$		
	$=\left(\frac{2h}{m}\right)\nu+\left(\frac{-2W}{m}\right)$		
Slope of the given graph	$=\frac{l}{m}$	1/2	
Intercept on the y – axis	76	/2 /2	
$\therefore \frac{2h}{m} = \frac{\ell}{n} \text{ or } \hbar = \frac{m\ell}{2n}$			
m n 2n		1∕₂	

SET 55/3 Page **7** of **22**


and $-\ell = \frac{-2W}{m}$ or $W = \frac{m\ell}{2}$		1∕₂	
(a) Two points of difference(b) FormulaCalculation of wavelength	½ + ½ Mark ½ Marks 1½ Mark		
(a)			
Any two point of difference :	1		
Interference	Diffraction		
Fringes are equally spaced.	Fringes are not equally spaced.		
Intensity is same for all maxima	Intensity falls as we go to successive maxima away from the centre.	$\frac{1}{2} + \frac{1}{2}$	
Superposition of two waves originating from two narrow slits.	Superposition of a continuous family of waves originating from each point		
	on a single slit.		
Maxima along an angle λ/a for two narrow slits separated by a distance a.	Minima at an angle of λ/a for a single slit of width a.		
(b)			
Let D be the distnce of the screen from	m the plane of the slits.		
We have			
Fring width $\beta = \frac{\lambda D}{d}$		1∕₂	
In the first case			
$\beta = \frac{\lambda D}{d}$ or $\beta d = \lambda D$	(i)	1/2	
In the second case			
$(\beta - 30 \times 10^{-6}) = \frac{\lambda(D - 0.05)}{d}$ or $(\beta - 30)$	$(ii) = \lambda(D - 0.05)$	1/2	
Subtracting (ii) from (i) we get			
$30 \times 10^{-6} \times d = \lambda \times 0.05$			
		SET 55/3 Pag	

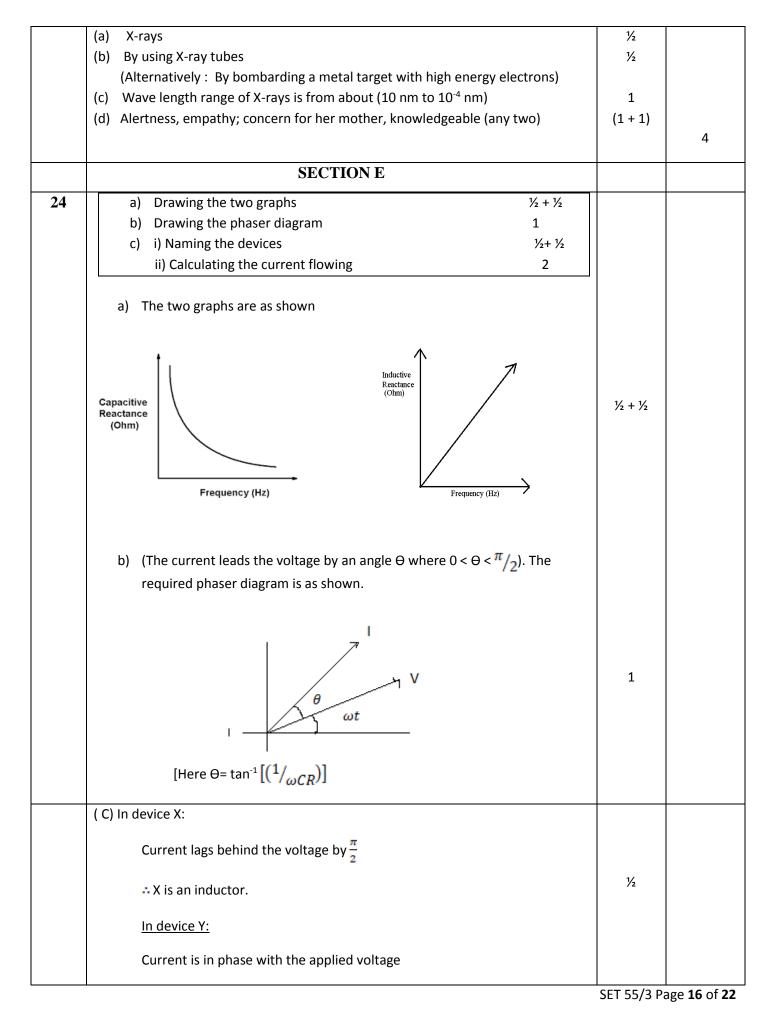
	$\therefore \ \lambda = \frac{30 \times 10^{-6} \times 10^{-3}}{5 \times 10^{-2}} \mathrm{m}$		
	$\therefore \lambda = 6 \times 10^{-7} \mathrm{m} = 600 \mathrm{nm}$	1/2	3
16	Writing the two loop equations½ + ½ MarkFinding the current through DB1½ MarksFinding the p.d. between B and D½ Mark		
	Using Kirchoff's voltage rule, we have :		
	For loop DABD		
	$ I_1 \times 1 + (1) + (-2) + 2I_1 + 2(I_1 + I_2) = 0$	1/	
	Or $5l_1 + 2l_2 = 1$ (i) $\frac{1}{L_2 + 2l_2} = 1$ (i)	1/2	
	For loop DCBD		
	$+ I_2 \times 3 + (3) + (-1) + I_2 + 2(I_1 + I_2) = 0$	1/2	
	Or $2I_1 + 6I_2 = -2$ (ii)	/2	
	Solving (i) and (ii), we get		
	$I_1 = \frac{5}{13} A$	1/2	
	$I_2 = \frac{-6}{13} A$	1/2	
	$\therefore \text{ Current through DB} = I_1 + I_2 = \frac{-1}{13} \text{ A}$	1/2	
	\therefore P.D. between B and D = 0.154 V	1/2	3
17	(a) Statement of Biot-Savaart law½ MarkIts vector form½ Mark(b) Obtaining the required expression2 Mark		
	a) According to Biot Savart law :		
	The magnitude of magnetic field $d\vec{B}$, due to a current element $d\vec{l}$, is		
	(i) proportional to current I and element length, dl		
	(ii) inversely proportional to the square of the distance r.		
			Page 9 of 2


SET 55/3 Page 9 of 22


SET 55/3 Page 10 of 22

SET 55/3 Page 11 of 22

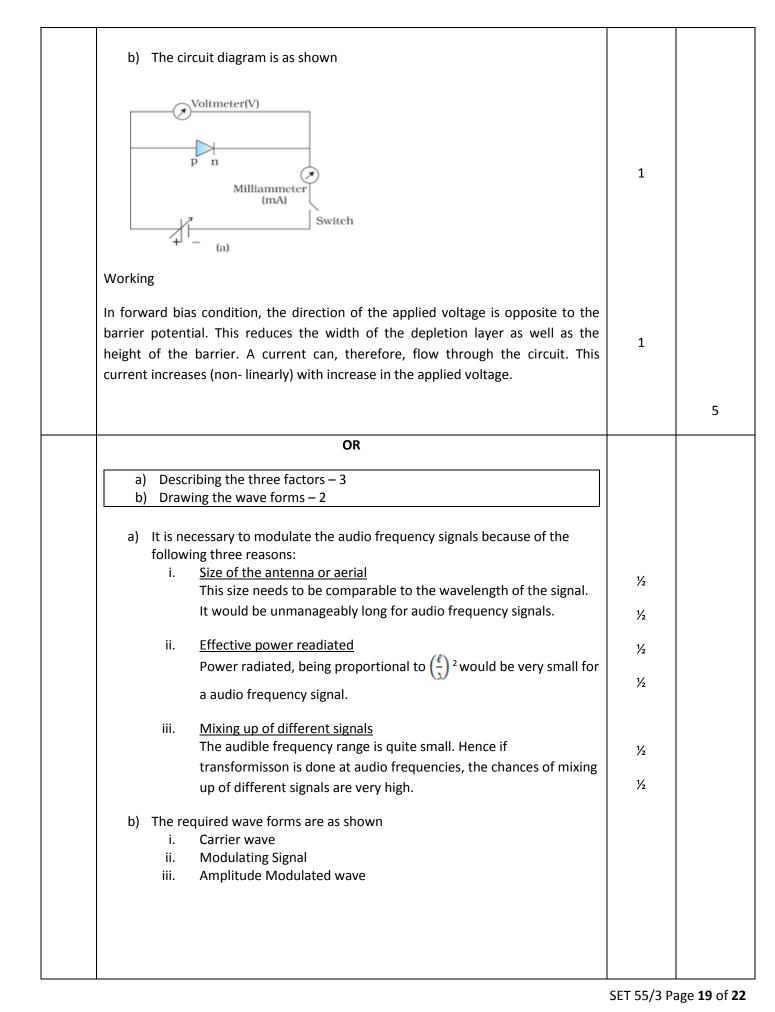
SET 55/3 Page 12 of 22

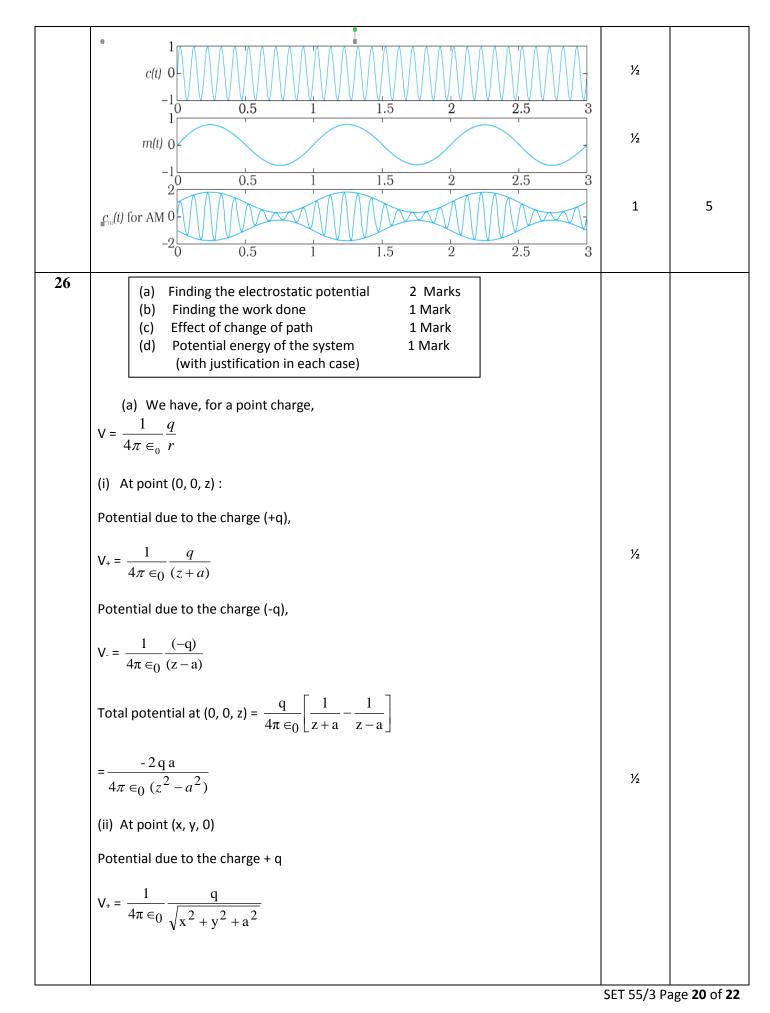


$\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$		
$\therefore r = \frac{r_1 r_2}{r_2}$	1/2	
$r_1 + r_2$	/2	
$I = I_1 + I_2$		
$V = E_1 - I_1 r_1$ and $V = E_2 - I_2 r_2$	1/2	
$\therefore I = \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$		
$V = \left(\frac{E_1 r_2 + E_2 r_2}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$	1/2	
$also V = E_{eq} - Ir_{eq}$	1/2	
$\Longrightarrow \frac{E_{eq}}{r_{eq}} = \frac{E_1}{r_1} + \frac{E_2}{r_2}$	1/2	
r_{eq} r_1 r_2		2
		3
22		
Definition of Electric flux	1	
	1 ¹ / ₂	
	/2	
Calculation of Charge within the cube	1	
Electric Flux is the dot product of electric field and area vector.	1	
Also Accept		
$\varphi = \oint \overrightarrow{E \cdot ds}$		
SI Unit : Nm ² /C or volt -meter	1/2	
For a given case		
$\phi = \phi_1 + \phi_2 = \left[E_x(at \ x = 2a) - E_x(at \ x = a) \right] a^2$		
$= \left[\alpha(2a) - \alpha(a) \right] a^2$		
$= \alpha a^3$		
$=100 \times (0.1)^3 = 0.1 Nm^2 / C$		
	1/2	
But		
$\phi = \frac{q}{\varepsilon_0}$	1/2	
$\therefore q = \varepsilon_0 \phi = 8.854 \times 10^{-12} \times 10^{-1} C$		
= 0.8854 pC	1/2	

SET 55/3 Page **14** of **22**

OR			
Relevant formulae Calculation of time taken by the electron Calculation of time taken by the proton	1 1 1		
We have			
Force =qE			
Acceleration a = $\frac{qE}{m}$		1/2	
Also			
$s = \frac{1}{2}at^2$ as $u = 0$			
$\therefore t = \sqrt{\frac{2s}{a}}$		1/2	
(i) For the electron		1/2	
m		,2	
= 2.92 ns		1/2	
		1/_	
		, -	
SECTION D			
 (a) Name of e.m. radiation ½ Mark (b) Method of production ½ Mark (c) Range of wavelength 1 Mark 			
	Relevant formulae Calculation of time taken by the electron Calculation of time taken by the proton We have Force =qE Acceleration $a = \frac{qE}{m}$ Also $s = \frac{1}{2}at^2 as u = 0$ $\therefore t = \sqrt{\frac{2s}{a}}$ (i) For the electron $a = \frac{eE}{m}$ $\therefore t = \sqrt{\frac{3 \times 10^{-2} \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 2.0 \times 10^4}}$ = 2.92 ns (ii) for proton $t = \sqrt{\frac{2 \times 1.5 \times 10^{-2} \times 1.67 \times 10^{-27}}{1.6 \times 10^{-19} \times 2 \times 10^4}}$ $= 0.125 \mu s$ SECTION D (a) Name of e.m. radiation ½ Mark (b) Method of production ½ Mark	Relevant formulae 1 Calculation of time taken by the electron 1 Calculation of time taken by the proton 1 We have Force =qE Acceleration $a = \frac{qE}{m}$ Also $s = \frac{1}{2}at^2 asu = 0$ $\therefore t = \sqrt{\frac{2s}{a}}$ (i) For the electron $a = \frac{eE}{m}$ $\therefore t = \sqrt{\frac{3 \times 10^{-2} \times 9.1 \times 10^{-31}}{1.6 \times 10^{-9} \times 2.0 \times 10^4}}$ = 2.92 ns (ii) for proton $t = \sqrt{\frac{2 \times 1.5 \times 10^{-2} \times 1.67 \times 10^{-27}}{1.6 \times 10^{-19} \times 2 \times 10^4}}$ $= 0.125 \mu s$ SECTION D (a) Name of e.m. radiation ½ Mark (b) Method of production ½ Mark	Relevant formulae1Calculation of time taken by the electron1Calculation of time taken by the proton1Ne have1Force =qE%Acceleration $a = \frac{qE}{m}$ %%Nso $s = \frac{1}{2}at^2 as u = 0$ $\therefore t = \sqrt{\frac{2s}{a}}$ %(i) For the electron $a = \frac{eE}{m}$ $\therefore t = \sqrt{\frac{3 \times 10^{-2} \times 9.1 \times 10^{-31}}{1.6 \times 10^{-9} \times 2.0 \times 10^4}}$ % $= 2.92 ns$ %(ii) for proton% $t = \sqrt{\frac{2 \times 1.5 \times 10^{-2} \times 1.67 \times 10^{-27}}{1.6 \times 10^{-9} \times 2.0 \times 10^4}}$ % $= 0.125 \mu s$ %(a) Name of e.m. radiation $\%$ Mark%(b) Method of production $\%$ Mark


SET 55/3 Page **15** of **22**



∴ X is a resistor.	1/2	
	/2	
We are given that		
$0.25 = \frac{220}{x_L}$		
or $X_L = \frac{220}{0.25} \Omega = 880 \Omega$	1/2	
Also $0.25 = 0.25 = \frac{220}{x_R}$		
$\therefore X_R = \frac{220}{0.25} \Omega = 880\Omega$	1/2	
For the series combination of X and Y,	,,,	
Equivalent impedance = $\sqrt{X_L^2 + X_R^2} = (880\sqrt{2})\Omega$	1/2	
$\therefore \text{ Current flowing} = \frac{220}{880\sqrt{2}} A = 0.177 A$	1/2	5
OR		
 a) Principal of working - 1 b) Defining efficiency - 1 c) Any two factor - ½ + ½ d) Calculating the current drawn - 2 		
 a) A transformer works on the principle of mutual induction. (Alternatively – an emf is induced in the secondary coil when the magnetic flux, linked with it changes with time due to ta (time) changing magnetic flux linked with the primary coil). 	1	
 b) The efficiency of a transformer equals the ratio of the output power to the input power. (Alteratively : 	1	
$Efficiency = \frac{output power}{input power}$		
or Efficiency $\frac{V_S I_S}{V_P I_P}$		
c) i) Eddy current losses ii) joule heat losses	1/2 + 1/2	
iii) hysteresis losses		
iv) magnetic flux leakage losses		
(Any two)		
	SET 55/3 Pa	age 17 of 2

d) We have	1/2
$\frac{V_S I_S}{V_P I_P} = 90\% = 0.9$	
$\therefore \frac{220}{22} \frac{I_s}{I_p} = 0.9$	1/2
$or \frac{I_s}{I_p} = \frac{0.9}{0.1} = 9$	
	<i>Y</i> ₂
$\therefore I_p = \frac{I_s}{9} = \frac{\binom{22}{440}}{9} A$	
$=\frac{1}{180}A$	
= 0.0056A	1/2
25	
a) Explaining the two processes- 1 + 1	
Defining the two terms - $\frac{1}{2} + \frac{1}{2}$	
b) Circuit diagram – 1	
Working -1	
a) The two important processes are diffusion and drift	1/2
Due to concentration gradient, the electrons diffuse from the n side to the	
p side and holes diffuse from the $ ho$ side to the n side.	1/2
$\stackrel{\longleftarrow}{\leftarrow} \text{Electron diffusion}$	
$\ominus \ominus \oplus \oplus$	
$\begin{array}{ccc} & & \ominus \ominus \oplus \oplus \\ p & & \ominus \ominus \oplus \oplus \oplus & n \\ & & \ominus \ominus \oplus \oplus \end{array}$	1/2
⊖⊖⊕⊕ ← Depletion region	
Hole diffusion $$ Hole drift	
Due to the diffusion, an electric field develops across the junction. Due to the field an electron moves from the p-side to the n -side, a hole moves from the n-side t	
the p-side. The flow of the charge carriers due to the electric field, is called drift.	1/2
Depletion region:	
It is the space charge region on either side of the junction, that gets depleted of	of
free charges, is known as the depletion region.	1/2
Detential Parrier	
Potential Barrier The potential difference, that gets developed across the junction and opposes the	ne
diffusion of charge carries and brings about a condition of equilibrium, is known a	
the barrier potential.	<i>Y</i> ₂
I	SET 55/3 Page 18 of 2

SET 55/3 Page 18 of 22

Potential due to the charge (-q)		
$V_{-} = \frac{1}{4\pi \epsilon_{0}} \frac{-q}{\sqrt{x^{2} + y^{2} + a^{2}}}$	1/2	
Total potential at (x, y, 0)		
$= \frac{q}{4\pi \in_0} \left(\frac{1}{\sqrt{x^2 + y^2 + a^2}} - \frac{1}{\sqrt{x^2 + y^2 + a^2}} \right) = 0$	1/2	
Give full credit of part (ii) if a student writes that the point (x,y,0) is equidistant from charges +q and –q, Hence total potential due to them at the given point will be zero.		
(b) Work done = q $[V_1 - V_2]$ V ₁ = 0 and V ₂ = 0	1/2	
\therefore work done = 0	1/2	
Where V_1 and V_2 are the total potential due to dipole at point (5,0,0) and (-7,0,0)		
(c) There would be no change This is because the electrostatic field is a conservative field.	1/2 1/2	
(Alternatively : The work done, in moving a test charge between two given points is independent of the path taken)		
(d) The two given charges make an electric dipole of dipole moment $ec{p}=q.ec{2a}$	1/2	
P.E. in position of unstable equilibrium (where $ ec{p} and ec{E}$ are antiparallel to each		
other)	1/2	
= + pE = 2 aq E		
OR	1	
(a) Finding the total energy before the capacitors are connected 1 Mark		
(b) Finding the total energy in the parallel combination 3 Marks		
(c) Reason for difference 1 Mark		
(a) We have Energy Stored in a capacitor = $\frac{1}{2}CV^2$	1/2	
: Energy stored in the charged capacitors $E_1 = \frac{1}{2}C_1V_1^2$ And $E_2 = \frac{1}{2}C_2V_2^2$		
	SET 55/3 Pa	age 21 o

$\therefore \text{ Total energy stored} = \frac{1}{2}C_1V_1^2 + C_2V_2^2$	1/2	
(b)Let V be the potential difference across the parallel combination.		
Equivalent capacitance = $(C_1 + C_2)$		
	1/2	
Since charge is a conserved quantity, we have		
$(C_1 + C_2)V = C_1V_1 + C_2V_2$	1/2	
$V = \left[\frac{C_{1}V_{1} + C_{2}V_{2}}{(C_{1} + C_{2})}\right]$	1	
∴ Total energy stored in the parallel combination		
$= \frac{1}{2}(C_1 + C_2)V^2$	1/2	
$= \frac{1}{2} \frac{(C_1 V_1 + C_2 V_2)^2}{(C_1 + C_2)}$	Y ₂	
(c) The total energy of the parallel combination is different (less) from the total energy before the capacitors are connected. This is because some energy gets used up due to the movement of charges during sharing of charge.	1	5