SAMPLE QUESTION PAPER CLASS-XII (2016-17) MATHEMATICS (041)

Time allowed: **3** hours

Maximum Marks: 100

General Instructions:

- (i) All questions are compulsory.
- (ii) This question paper contains **29** questions.
- (iii) Question **1-4** in **Section A** are very short-answer type questions carrying **1** mark each.
- (iv) Question **5-12** in **Section B** are short-answer type questions carrying **2** marks each.
- (v) Question **13-23** in **Section C** are long-answer-**I** type questions carrying **4** marks each.
- (vi) Question **24-29** in **Section D** are long-answer-**II** type questions carrying **6** marks each.

SECTION-A

Questions from 1 to 4 are of 1 mark each.

1. What is the principal value of
$$\tan^{-1}\left(\tan\frac{2\pi}{3}\right)$$
?

- **2.** A and B are square matrices of order 3 each, |A| = 2 and |B| = 3. Find |3AB|
- **3.** What is the distance of the point (p, q, r) from the x-axis?
- 4. Let $f: R \to R$ be defined by $f(x) = 3x^2 5$ and $g: R \to R$ be defined by $g(x) = \frac{x}{x^2 + 1}$. Find gof

SECTION-B

Questions from 5 to 12 are of 2 marks each.

- How many equivalence relations on the set {1,2,3} containing (1,2) and (2,1) are there in allJustify your answer.
- 6. Let l_{i} , m_{i} , n_{i} ; i = 1, 2, 3 be the direction cosines of three mutually perpendicular vectors in space. Show that AA' = I₃, where A = $\begin{bmatrix} l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3} \end{bmatrix}$.

7. If
$$e^{y}(x+1) = 1$$
, show that $\frac{dy}{dx} = -e^{y}$

8. Find the sum of the order and the degree of the following differential equations:

$$\frac{d^2y}{dx^2} + \sqrt[3]{\frac{dy}{dx}} + (1 + x) = 0$$

- **9.** Find the Cartesian and Vector equations of the line which passes through the point (-2, 4,-5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{8-z}{-6}$
- 10. Solve the following Linear Programming Problem graphically: Maximize Z = 3x + 4ysubject to $x + y \le 4, x \ge 0$ and $y \ge 0$
- **11.** A couple has 2 children. Find the probability that both are boys, if it is known that (i) one of them is a boy (ii) the older child is a boy.
- **12.** The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. Find the rate at which its area increases, when side is 10 cm long.

SECTION-C

Questions from 13 to 23 are of 4 marks each.

13. If $A + B + C = \pi$, then find the value of

$$\begin{vmatrix} \sin(A + B + C) & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos(A + B) & -\tan A & 0 \end{vmatrix}$$

Using properties of determinant, prove that

 $\begin{vmatrix} b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c \end{vmatrix} = 3abc - a^3 - b^3 - c^3$

- 14. It is given that for the function $f(x) = x^3 6x^2 + ax + b$ Rolle's theorem holds in [1, 3] with c = $2 + \frac{1}{\sqrt{3}}$. Find the values of 'a' and 'b'
- **15.** Determine for what values of x, the function $f(x) = x^3 + \frac{1}{x^3}$ (x \neq 0) is strictly increasing or strictly decreasing

OR

Find the point on the curve $y = x^3 - 11x + 5$ at which the tangent is y = x - 11

- **16.** Evaluate $\int_0^2 (x^2 + 3) dx$ as limit of sums.
- **17.** Find the area of the region bounded by the y-axis, $y = \cos x$ and $y = \sin x$, $0 \le x \le \frac{\pi}{2}$
- **18.** Can y = ax + $\frac{b}{a}$ be a solution of the following differential equation?

$$y = x \frac{dy}{dx} + \frac{b}{\frac{dy}{dx}} \dots \dots \dots (*)$$

If no, find the solution of the D.E.(*).

Check whether the following differential equation is homogeneous or not

$$x^2 \frac{dy}{dx} - xy = 1 + \cos\left(\frac{y}{x}\right), x \neq 0$$

Find the general solution of the differential equation using substitution y=vx.

19. If the vectors $\vec{p} = a\hat{i} + \hat{j} + \hat{k}$, $\vec{q} = \hat{i} + b\hat{j} + \hat{k}$ and $\vec{r} = \hat{i} + \hat{j} + \widehat{CK}$ are coplanar, then for a, b, $c \neq 1$ show that

$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

- **20.** A plane meets the coordinate axes in A, B and C such that the centroid of \triangle ABC is the point (α , β , γ). Show that the equation of the plane is $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$
- 21. If a 20 year old girl drives her car at 25 km/h, she has to spend Rs 4/km on petrol. If she drives her car at 40 km/h, the petrol cost increases to Rs 5/km. She has Rs 200 to spend on petrol and wishes to find the maximum distance she can travel within one hour. Express the above problem as a Linear Programming Problem. Write any one value reflected in the problem.
- **22.** The random variable X has a probability distribution P(X) of the following form, where k is some number:

$$P(X) = \begin{cases} k, \text{ if } x = 0\\ 2k, \text{ if } x = 1\\ 3k, \text{ if } x = 2\\ 0, \text{ otherwise} \end{cases}$$

(i) Find the value of k (ii) Find P(X < 2) (iii) Find P(X ≤ 2) (iv) Find P(X ≥ 2)

23. A bag contains (2n +1) coins. It is known that 'n' of these coins have a head on both its sides whereas the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is $\frac{31}{42}$, find the value of 'n'.

SECTION-D

Questions from 24 to 29 are of 6 marks each

24. Using properties of integral, evaluate
$$\int_0^{\pi} \frac{x}{1+\sin x} dx$$

OR

Find: $\int \frac{\sin x}{\sin^3 x + \cos^3 x} dx$

25. Does the following trigonometric equation have any solutions? If Yes, obtain the solution(s):

$$\tan^{-1}\left(\frac{x+1}{x-1}\right) + \tan^{-1}\left(\frac{x-1}{x}\right) = -\tan^{-1}7$$

OR

Determine whether the operation * define below on \mathbb{Q} is binary operation or not.

a *

If yes, check the commutative and the associative properties. Also check the existence of identity element and the inverse of all elements in $\mathbb Q$.

26.

Find the value of x, y and z, if A = $\begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ satisfies A' = A⁻¹

OR

Verify: A(adj A) = (adj A)A =
$$|A||I$$
 for matrix A = $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$

27. Find
$$\frac{dy}{dx}$$
, if $y = e^{\sin^2 x} \left\{ 2 \tan^{-1} \sqrt{\frac{1-x}{1+x}} \right\}$

- **28.** Find the shortest distance between the line x y + 1 = 0 and the curve $y^2 = x$
- **29.** Define skew lines. Using only vector approach, find the shortest distance between the following two skew lines:

$$\vec{r} = (8 + 3\lambda) \hat{\iota} - (9 + 16\lambda) \hat{\jmath} + (10 + 7\lambda) \hat{k} \vec{r} = 15 \hat{\iota} + 29 \hat{\jmath} + 5 \hat{k} + \mu (3 \hat{\iota} + 8 \hat{\jmath} - 5 \hat{k})$$

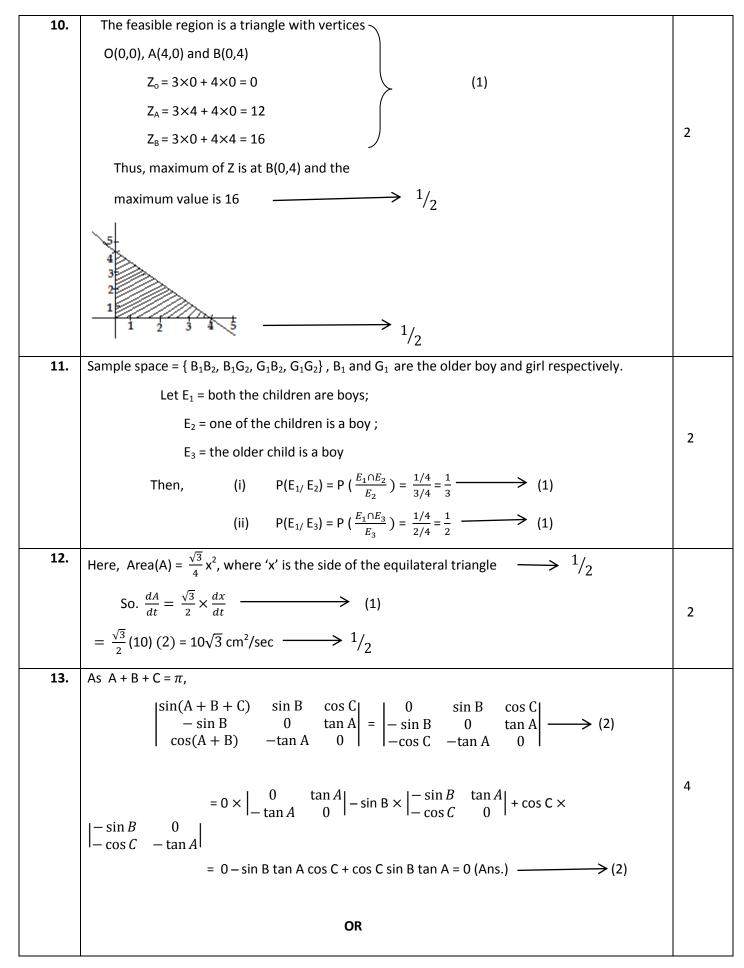
SAMPLE QUESTION PAPER

CLASS-XII (2016-17)

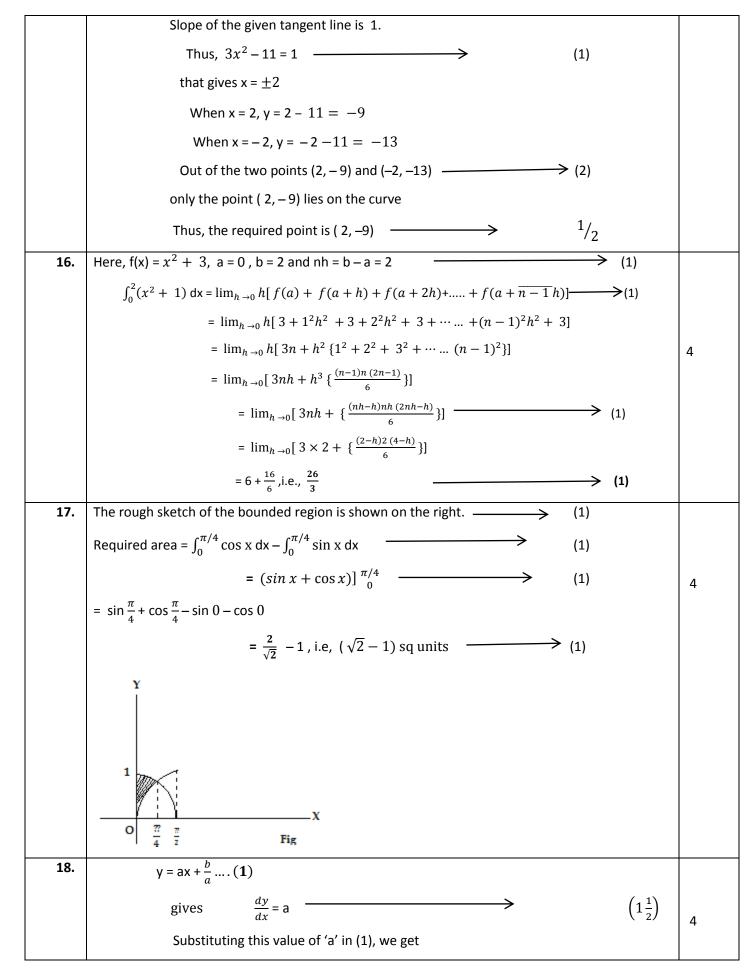
MATHEMATICS (041)

Marking Scheme

1.	$\tan^{-1}\left(\tan\frac{2\pi}{3}\right) = \tan^{-1}\left(-\tan\frac{\pi}{3}\right) = -\frac{\pi}{3}$	
		1
2.	$ 3AB = 3^{3} A B = 27 \times 2 \times 3 = 162$	1
3.	Distance of the point (p, q, r) from the x-axis	
	= Distance of the point (p, q, r) from the point (p,0,0)	1
	$=\sqrt{q^2+r^2}$	
4.	$gof(x) = g\{f(x)\} = g(3x^2 - 5) = \frac{3x^2 - 5}{(3x^2 - 5)^2 + 1} = \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$	1
5.	Equivalence relations could be the following:	
	$\{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ and (1)	
	$\{(1,1), (2,2), (3,3), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}$ (1)	2
	So, only two equivalence relations.(Ans.)	
6.	$AA' = \begin{bmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{bmatrix} \begin{bmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3 $ (1)	
	because	2
	$l_i^2 + m_i^2 + n_i^2 = 1$, for each i = 1, 2, 3 $\longrightarrow 1/2$	
	$l_i l_j + m_i m_j + n_i n_j = 0$ (i \neq j) for each i, j = 1, 2, 3 $\longrightarrow 1/2$	
7.	On differentiating $e^{y}(x + 1) = 1$ w.r.t. x, we get	
	$e^{y} + (x+1) e^{y} \frac{dy}{dx} = 0 \longrightarrow \qquad (1)$	2
	$\implies e^{\gamma} + \frac{dy}{dx} = 0$	
	$\implies \frac{dy}{dx} = -e^y \qquad \longrightarrow \qquad (1)$	
8.	Here, $\left\{ \frac{d^2 y}{dx^2} + (1+x) \right\}^3 = -\frac{dy}{dx}$ (1)	
	Thus, order is 2 and degree is 3. So, the sum is 5 \longrightarrow (1)	2
9.	Here, $\frac{x+3}{3} = \frac{y-4}{5} = \frac{8-z}{-6}$ is same as $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z-8}{6}$	
	Cartesian equation of the line is $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$ (1)	2
	Vector equation of the line is	
	$\vec{r} = (-2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}) + \lambda(3\hat{\imath} + 5\hat{\jmath} + 6\hat{k}) \longrightarrow (1)$	



Let $\Delta = \begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix}$ 4 Applying $C_1 \rightarrow C_1 + C_3$, we get $\Delta = (a + b + c) \begin{vmatrix} 1 & a - b & a \\ 1 & b - c & b \\ 1 & c - a & c \end{vmatrix} \longrightarrow$ (1) Applying $R_2 \rightarrow R_2 - R_1$, and $R_3 \rightarrow R_3 - R_1$, we get $\Delta = (a + b + c) \begin{vmatrix} 1 & a - b & a \\ 0 & 2b - a - c & b - a \\ 0 & 2a + b + c & c - a \end{vmatrix} \longrightarrow$ (1) Expanding Δ along first column, we have the result (2) Since Rolle's theorem holds true, f(1) = f(3)14. i.e., $(1)^3 - 6(1)^2 + a(1) + b = (3)^3 - 6(3)^2 + a(3) + b$ i.e., a + b + 22 = 3a + b → (2) ⇒ a = 11 ------4 Also, $f'(x) = 3x^2 - 12x + a$ or $3x^2 - 12x + 11$ As f'(c) = 0, we have 3($2 + \frac{1}{\sqrt{3}}$)² - 12(2 + $\frac{1}{\sqrt{3}}$) +11 = 0 As it is independent of b, b is arbitrary. \longrightarrow (2) Here, $f'(x) = 3x^2 - 3x^{-4} = \frac{3(x^6 - 1)}{x^4}$ 15. (1) $=\frac{3(x^4+x^2+1)}{x^4}(x+1)(x-1)$ 4 Critical points are – 1 and 1 (1) \Rightarrow f'(x) > 0 if x > 1 or x < -1; and f'(x) < 0 if -1 < x < 1 $\{::\frac{3(x^4+x^2+1)}{x^4} \text{ always} + \text{ive}\}$ (1) or x < -1; and strictly decreasing for (-1,0)u(0,1) [1] (1)OR 4 Here, $\frac{dy}{dx} = 3x^2 - 11$ $^{1}/_{2}$ So, slope of the tangent is $3x^2 - 11$



$$y = x \frac{dy}{dx} + \frac{b}{dx} \qquad (1 \frac{1}{2})$$
Thus, $y = ax + \frac{b}{a}$ is a solution of the following differential equation $y = x \frac{dy}{dx} + \frac{b}{dx} \rightarrow 1$

OR

Given differential equation can be written as
$$\frac{dy}{dx} = \frac{1+xy+\cos(\frac{y}{2})}{x^2} = \frac{x}{x} + \left[\frac{1+\cos(\frac{y}{2})}{x^2}\right] \dots (1)$$
Let $F(x, y) = \frac{y}{x} + \left[\frac{1+\cos(\frac{y}{2})}{x^2}\right]$
Then $F(\lambda x, \lambda y) = \frac{dy}{\lambda x} + \frac{1+\cos(\frac{y}{2})}{x^2}$

Hence, the given D.E. is not a homogeneous equation. \rightarrow (1)

Putting $y = vx$ and $\frac{dy}{dx} = v + x \frac{dx}{dx}$ in (1), we get
$$v + x \frac{dw}{dx} = v + \frac{1+\cos x}{x^2}$$

$$\Rightarrow \frac{dy}{1+\cos y} = \frac{1}{x^2} dx$$

$$\Rightarrow sec^2\left(\frac{y}{2}\right) dv = \frac{x}{x^2} dx$$
(1)

integrating both sides, we get
$$2 \tan \frac{y}{2x} = -\frac{1}{x^2} + C \qquad 1\frac{1}{2}$$
or $2 \tan \frac{y}{2x} = -\frac{1}{x^2} + C \qquad 1\frac{1}{2}$

19. Since the vector \vec{p}, \vec{q} and \vec{r} are coplanar
$$\therefore [\vec{p}, \vec{q}, \vec{r}] = 0 \qquad (1)$$

$$i.e., \begin{bmatrix} a & 1 & 1 \\ 1 & b & 1 & 0 \\ 1 & 1 & c & 0 & c - 1 \end{bmatrix} = 0$$

$$(1)$$

$$dx$$

[(h - 1)(-1) + (1 - 1)(-1) + (1 - 1)(-1) = 0	
	$\implies a(b-1)(c-1) - 1(1-a)(c-1) - 1(1-a)(b-1) = 0$	
	i.e., $a(1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b) = 0 \longrightarrow (1)$	
	Dividing both the sides by $(1-a)(1-b)(1-c)$, we get	
	$\frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$	
	i.e., $-\left(1-\frac{1}{1-a}\right) + \frac{1}{1-b} + \frac{1}{1-c} = 0$	
	i.e., $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$ (1)	
	1-a $1-b$ $1-c$	
20.	We know that the equation of the plane having intercepts a, b and c on the three	
	coordinate axes is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (1)	
	Here, the coordinates of A, B and C are (a,0,0), (0,b,0) and (0,0,c) respectively.	4
	The centroid of \triangle ABC is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$. \longrightarrow (1)	
	Equating $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ to (α, β, γ) , we get $a = 3\alpha, b = 3\beta$ and $c = 3\gamma \longrightarrow (1)$	
	Thus, the equation of the plane is $\frac{x}{3\alpha} + \frac{y}{3\beta} + \frac{z}{3\gamma} = 1$	
	or $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$ (1)	
21.	Let the distance covered with speed of 25 km/h = x km	
	and the distance covered with speed of 40 km/h = y km $(\frac{1}{2})$	
	Total distance covered = $z \text{ km}$	
	The L.P.P. of the above problem, therefore, is \longrightarrow (1)	4
	Maximize $z = x + y$	
	subject to constraints	
	$4x + 5y \le 200 $ (1)	
	$\frac{x}{25} + \frac{y}{40} \le 1$	
	$x \ge 0, y \ge 0 \tag{1}$	
	Any one value \longrightarrow (½)	
22.	Here,	
	X 0 1 2	
	P(X) k 2k 3k	4
	(i) Since P(0) + P(1) + P(2)= 1, we have	

	k + 2k + 3k = 1		
	i.e., 6 k = 1, or k = $\frac{1}{6}$	\longrightarrow (1)	
	(ii) $P(X < 2) = P(0) + P(1) = k + 2k = 3k = \frac{1}{2};$	→ (1)	
	(iii) $P(X \le 2) = P(0) + P(1) + P(2) = k + 2k + 3k = 6k$	= 1 (1)	
	(iv) $P(X \ge 2) = P(2) = 3k = \frac{1}{2}$	(1)	
23. Let the e	events be described as follows:		
	E ₁ : a coin having head on both sides is	s selected.	
	E_2 : a fair coin is selected.		
	A : head comes up in tossing a select	ed coin	
	$P(E_1) = \frac{n}{2n+1}; P(E_2) = \frac{n+1}{2n+1}; P(A/E)$	E_1) = 1; P(A/E_2) = $\frac{1}{2}$ \longrightarrow (2)	
	It is given that $P(A) = \frac{31}{42}$. So,		4
	$P(E_1) P(A/E_1) + P(E_2) P(A/E_2) = \frac{31}{42}$		
	$\implies \qquad \frac{n}{2n+1} \times 1 + \frac{n+1}{2n+1} \times \frac{1}{2} = \frac{31}{42}$	→ (1)	
	$\implies \qquad \frac{1}{2n+1} \left[n + \frac{n+1}{2} \right] = \frac{31}{42}$		
	$\Rightarrow \qquad 42(3n+1) = 62(2n+1)$	x (1)	
	\Rightarrow 2n = 20, or n = 10	\longrightarrow (1)	
24. $I = \int_0^{\pi} \frac{1}{1}$	$\frac{x}{+\sin x} dx = \int_0^{\pi} \frac{\pi - x}{1 + \sin(\pi - x)} dx $ (1)	.)	
= 1	$\int_0^{\pi} \frac{1}{1+\sin x} dx - \int_0^{\pi} \frac{x}{1+\sin x} dx$		
\Rightarrow	$2I = \pi \int_0^{\pi} \frac{1}{1 + \sin x} dx \tag{1}$		
\Rightarrow	$\frac{\pi}{2}\int_0^{\pi} \frac{1}{1+\cos(\frac{\pi}{2}-x)} \mathrm{d}x$		6
\Rightarrow	$\frac{\pi}{2} \int_0^{\pi} \frac{1}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)} dx$		
\Rightarrow	$\frac{\pi}{4} \int_0^{\pi} sec^2(\frac{\pi}{4} - \frac{x}{2}) \mathrm{d}x$	(1)	
\Rightarrow	$I = \frac{\pi}{4} \left[-2\tan\left[\left(\frac{\pi}{4} - \frac{x}{2}\right)\right]_{0}^{\pi}$	(2)	
\Rightarrow	$I = \frac{\pi}{4} \left[2 - (-2) \right] = \pi$	(1)	
	OR		

	ain u tan u aag ² u		
	Let I = $\int \frac{\sin x}{\sin^3 x + \cos^3 x} dx = \int \frac{\tan x \sec^2 x}{\tan^3 x + 1} dx$	(1/2)	
	On substituting tan x = t and $\sec^2 x dx = dt$, we get	(1)	
	$I = \int \frac{t}{t^3 + 1} dt = \int \frac{t}{(t+1)(t^2 - t + 1)} dt$	(1/2)	6
	$= -\frac{1}{3} \int \frac{1}{t+1} dt + \frac{1}{3} \int \frac{t+1}{t^2 - t+1} dt$		
	$= -\frac{1}{3}\log t+1 + \frac{1}{6}\int \frac{(2t-1)+3}{t^2-t+1} dt$	(1)	
	$= -\frac{1}{3}\log t+1 + \frac{1}{6}\int \frac{2t-1}{t^2-t+1} dt + \frac{1}{2}\int \frac{1}{t^2-t+1} dt$		
	$= -\frac{1}{3}\log t+1 + \frac{1}{6}\log t^{2} - t+1 + \frac{1}{2}\int \frac{1}{\left(t-\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} dt$		
	$= -\frac{1}{3}\log t+1 + \frac{1}{6}\log t^2 - t+1 + \frac{1}{\sqrt{3}}\tan^{-1}(\frac{2t-1}{\sqrt{3}})$	(2)	
	$= -\frac{1}{3}\log \tan x + 1 + \frac{1}{6}\log \tan^2 x - \tan x + 1 + \frac{1}{\sqrt{3}}\tan^{-1}(\frac{2\tan x - 1}{\sqrt{3}}) + c$	(1)	
25.	(x+1) $(x-1)$ $(x-1)$		
25.	$\tan^{-1}\left(\frac{x+1}{x-1}\right) + \tan^{-1}\left(\frac{x-1}{x}\right) = -\tan^{-1}7$		
	$\implies \tan^{-1}\left[\frac{\binom{x+1}{x-1} + \binom{x-1}{x}}{1 - \binom{x+1}{x-1}\binom{x-1}{x}}\right] = -\tan^{-1}7 \text{, if } \left(\frac{x+1}{x-1}\right)\left(\frac{x-1}{x}\right) < 1 \dots (*)$	(2)	
	$\implies \tan^{-1}\left[\frac{x(x+1)+(x-1)^2}{(x-1)x-(x+1)(x-1)}\right] = -\tan^{-1}7$		
	$\implies \frac{(x^2+x)+(x^2+1-2x)}{(x^2-x)-(x^2-1)} = \tan\left[-\tan^{-1}7\right]$		6
	$\implies \frac{2x^2 - x + 1}{-x + 1} = -7$	(1)	
	$\implies 2x^2 - 8x + 8 = 0$		
	$\Rightarrow (x-2)^2 = 0$		
	$\Rightarrow x = 2$	(1)	
	Let us now verify whether x = 2 satisfies the condition (*)		
	For x = 2,		
	$\left(\frac{x+1}{x-1}\right)\left(\frac{x-1}{x}\right) = 3 \times \frac{1}{2} = \frac{3}{2}$ which is not less than 1		
	Hence, this value does not satisfy the condition (*)	(1)	
	i.e., there is no solution to the given trigonometric equation.	(1)	
	OR		
	Given $*$ on Q , defined by $a*b = ab+1$		
	Let, $a \in Q$, $b \in Q$ then		
	ab€Q		

	and (ab+1) \in Q		6
	\Rightarrow a*b=ab+1 is defined on Q		
	\therefore * is a binary operation on Q	(1)	
	Commutative : a*b = ab+1		
	b*a = ba+1		
	=ab+1 (: ba = ab in Q)		
	\Rightarrow a*b =b*a		
	So * is commutative on Q	(1)	
	Associative: (a*b)*c= (ab+1)*c =(ab+1)c+1		
	= abc+c+1		
	a*(b*c)=a*(bc+1)		
	= a(bc+1)+1		
	= abc+a+1		
	∴ (a*b)*c ≠ a*(b*c)		
	So $*$ is not associative on \mathbb{Q}	(1)	
	Identity Element : Let $e \in \mathbb{Q}$ be the identity element, then for every a $e \mathbb{Q}$		
	a*e=a and e*a=a		
	ae+1=a and ea+1=a		
	$\Rightarrow e = \frac{a-1}{a} \text{ and } e = \frac{a-1}{a}$	(1)	
	e is not unique as it depend on `a' ,hence identity element does not exist for st	(1)	
	Inverse : since there is no identity element hence, there is no inverse.	(1)	
26.	The relation $A' = A^{-1}$ gives $A'A = A^{-1}A = I$	(1)	
	Thus, $\begin{bmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{bmatrix} \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\left(1\frac{1}{2}\right)$	
	$\Rightarrow \begin{bmatrix} 0+x^2+x^2 & 0+xy-xy & 0-xz+xz \\ 0+xy-xy & 4y^2+y^2+y^2 & 2yz-yz-yz \\ 0-zx+zx & 2yz-yz-yz & z^2+z^2+z^2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$	6
	$\Rightarrow \begin{bmatrix} 2x^2 & 0 & 0\\ 0 & 6y^2 & 0\\ 0 & 0 & 3z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$	(2)	
	$\Rightarrow 2x^2 = 1; 6y^2 = 1 \text{ and } 3z^2 = 1$		
	\Rightarrow x = $\pm \frac{1}{\sqrt{2}}$; y = $\pm \frac{1}{\sqrt{6}}$; z = $\pm \frac{1}{\sqrt{3}}$	$\left(1\frac{1}{2}\right)$	
	OR		

-			1
	Here, $ A = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{vmatrix} = 1(0+0) + 1(9+2) + 2(0-0) = 11$	(1)	
	$\implies A I = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \dots $	(1/2)	6
	$adj A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$	(2)	
	Now, A(adj A) = $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$	(1)	
	and $(adj A)A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$	(1)	
	Thus, it is verified that $A(adj A) = (adj A)A = A I$	(1/2)	
27.	Putting $x = \cos 2\theta$ in $\left\{2 \tan^{-1} \sqrt{\frac{1-x}{1+x}}\right\}$, we get	(1)	
	$2 \tan^{-1} \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}}$		
	i.e., $2 \tan^{-1} \sqrt{\frac{2 \sin^2 \theta}{2 \cos^2 \theta}} = 2 \tan^{-1} (\tan \theta) = 2\theta = \cos^{-1} x$	(2)	6
	Hence, $y = e^{\sin^2 x} \cos^{-1} x$		
	$\Rightarrow \log y = \sin^2 x + \log (\cos^{-1} x)$		
	$\implies \qquad \frac{1}{y} \times \frac{dy}{dx} = 2\sin x \cos x + \frac{1}{\cos^{-1}x} \times \frac{-1}{\sqrt{1-x^2}} = \sin 2x - \frac{1}{\cos^{-1}x\sqrt{1-x^2}}$	(2)	
	$\Rightarrow \frac{dy}{dx} = e^{\sin^2 x} \cos^{-1} x \left[\sin 2x - \frac{1}{\cos^{-1} x \sqrt{1 - x^2}} \right]$	(1)	
28.	Let (t^2, t) be any point on the curve $y^2 = x$. Its distance (S) from the		
_	line x - y + 1 = 0 is given by $\frac{1}{2}$		
	$S = \left \frac{t - t^2 - 1}{\sqrt{1 + 1}} \right \qquad \qquad 1/2$		
	$=\frac{t^2-t+1}{\sqrt{2}} \{:: t^2-t+1 = \left(t-\frac{1}{2}\right)^2 + \frac{3}{4} > 0\} $ (1)		
	$\implies \frac{dS}{dt} = \frac{1}{\sqrt{2}} (2t - 1) \tag{1}$		6
	and $\frac{d^2S}{dt^2} = \sqrt{2} > 0 \tag{1}$		
	Now, $\frac{dS}{dt} = 0 \implies \frac{1}{\sqrt{2}} (2t - 1) = 0$, i.e., $t = \frac{1}{2}$ (1)		
	Thus, S is minimum at $t = \frac{1}{2}$		
L	1		1

So, the required shortest distance is
$$\frac{(\frac{1}{2})^2 - (\frac{1}{2}) + 1}{\sqrt{2}} = \frac{3}{6\sqrt{2}}$$
, or $\frac{3\sqrt{2}}{8}$ (1)
Y
Fig. 1
29. 1) the line which are neither intersecting nor parallel. (1)
2) The given equations are
 $\vec{r} = 8\ \hat{i} - 9\ \hat{j} + 10\ \hat{k} + \mu(3\ \hat{i} - 16\ \hat{j} + 7\ \hat{k}) \dots \dots \dots (1)$ (½)
 $\vec{r} = 15\ \hat{i} + 29\ \hat{j} + 5\ \hat{k} + \mu(3\ \hat{i} + 8\ \hat{j} - 5\ \hat{k}) \dots \dots \dots (2)$
Here, $\vec{a}_1 = 8\ \hat{i} - 9\ \hat{j} + 10\ \hat{k}; \quad \vec{a}_2 = 15\ \hat{i} + 29\ \hat{j} + 5\ \hat{k}$
 $\vec{b}_1 = 3\ \hat{i} - 16\ \hat{j} + 7\ \hat{k}; \quad \vec{b}_2 = 3\ \hat{i} + 8\ \hat{j} - 5\ \hat{k}$
Now, $\vec{a}_2 - \vec{a}_1 = (15-8)\ \hat{i} + (29+9)\ \hat{j} + (5-10)\ \hat{k} = 7\ \hat{i} + 38\ \hat{j} - 5\ \hat{k}$ (1)
 $\vec{b}_1 \times \vec{b}_2 = \left| \frac{\hat{i}}{3} - \frac{16}{8} - \frac{7}{3} \right| = 24\ \hat{i} + 36\ \hat{j} + 72\ \hat{k}$ (1)
 $\Rightarrow (\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) = (24\ \hat{i} + 36\ \hat{j} + 72\ \hat{k}) \cdot (7\ \hat{i} + 38\ \hat{j} - 5\ \hat{k}) = 1176$ (1)
Shortest distance $= \left| \frac{(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)}{\sqrt{26^2} = \frac{1176}{84} = \frac{99}{7}$ (1)

--0-0-0--