Marking Scheme

Class- X Session- 2021-22

TERM 1

Subject- Mathematics (Standard)

		SECTION A	
QN	Correct Option	HINTS/SOLUTION	MAR KS
1	(b)	Least composite number is 4 and the least prime number is 2. $LCM(4,2)$: $HCF(4,2) = 4:2 = 2:1$	1
2	(a)	For lines to coincide: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ so, $\frac{5}{15} = \frac{7}{21} = \frac{-3}{-k}$ i.e. $k = 9$	1
3	(b)	By Pythagoras theorem The required distance $=\sqrt{(200^2 + 150^2)}$ $=\sqrt{(40000 + 22500)} = \sqrt{(62500)} = 250\text{m}$. So the distance of the girl from the starting point is 250m.	1
4	(d)	Area of the Rhombus = $\frac{1}{2} d_1 d_2 = \frac{1}{2} \times 24 \times 32 = 384 \text{ cm}^2$. Using Pythagoras theorem side ² = $(\frac{1}{2}d_1)^2 + (\frac{1}{2}d_2)^2 = 12^2 + 16^2 = 144 + 256 = 400$ Side = 20cm Area of the Rhombus = base x altitude $384 = 20 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 10$	1
5	(a)	Possible outcomes are (HH), (HT), (TH), (TT) Favorable outcomes(at the most one head) are (HT), (TH), (TT) So probability of getting at the most one head =3/4	1
6	(d)	Ratio of altitudes = Ratio of sides for similar triangles So AM:PN = AB:PQ = 2:3	1
7	(b)	$2\sin^2\beta - \cos^2\beta = 2$ Then $2\sin^2\beta - (1-\sin^2\beta) = 2$ $3\sin^2\beta = 3 \text{ or } \sin^2\beta = 1$ $\beta \text{ is } 90^\circ$	1
8	(c)	Since it has a terminating decimal expansion, so prime factors of the denominator will be 2,5	1
9	(a)	Lines x=a is a line parallel to y axis and y=b is a line parallel to x axis. So they will intersect.	1
10	(d)	Distance of point A(-5,6) from the origin(0,0) is $\sqrt{(0+5)^2 + (0-6)^2} = \sqrt{25+36} = \sqrt{61}$ units	1
11	(b)	$a^2=23/25$, then $a=\sqrt{23}/5$, which is irrational	1
12	(c)	LCM X HCF = Product of two numbers $36 \times 2 = 18 \times x$ $x = 4$	1
13	(b)	$\tan A = \sqrt{3} = \tan 60^{\circ} \text{ so } \angle A = 60^{\circ}, \text{ Hence } \angle C = 30^{\circ}.$ So $\cos A \cos C$ - $\sin A \sin C = (1/2)x (\sqrt{3}/2) - (\sqrt{3}/2)x (1/2) = 0$	1
14	(a)	$1x + 1x + 2x = 180^{\circ}, x = 45^{\circ}.$ $\angle A, \angle B \text{ and } \angle C \text{ are } 45^{\circ}, 45^{\circ} \text{ and } 90^{\circ} \text{resp.}$ $\frac{\sec A}{\csc B} - \frac{\tan A}{\cot B} = \frac{\sec 45}{\csc 45} - \frac{\tan 45}{\cot 45} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{1} = 1 - 1 = 0$	1

Downloaded From :http://cbseportal.com/

Courtesy : CBSE

15	(d)	Number of revolutions = $\frac{\text{total distance}}{\frac{176}{1000000000000000000000000000000000000$	1
		Number of revolutions= $\frac{\text{cotar distance}}{\text{circumference}} = \frac{170}{2 \text{ X} \frac{22}{7} \text{X } 0.7}$	
		=40	
16	(b)	perimeter of AABC BC	1
	(,,,,	${\text{perimeter of }\Delta \text{DEF}} = {\text{EF}}$	
		$\frac{7.5}{\text{perimeter of }\Delta DEF} = \frac{2}{4}$. So perimeter of $\Delta DEF = 15\text{cm}$	
		perimeter of ADEF 4	
17	(b)	Since DE BC, \triangle ABC \sim \triangle ADE (By AA rule of similarity)	1
		So $\frac{AD}{AB} = \frac{DE}{BC}$ i.e. $\frac{3}{7} = \frac{DE}{14}$. So DE = 6cm	
		AB BC 7 14. 50 DE = 50 M	
18	(a)	Dividing both numerator and denominator by $\cos \beta$,	1
		$\frac{4\sin\beta - 3\cos\beta}{4\sin\beta + 3\cos\beta} = \frac{4\tan\beta - 3}{4\tan\beta + 3} = \frac{3 - 3}{3 + 3} = 0$	
19	(d)	$-2(-5x + 7y = 2)$ gives $10x - 14y = -4$. Now $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = -2$	1
20	(a)	Number of Possible outcomes are 26	1
	(/	Favorable outcomes are M, A, T, H, E, I, C, S	
		probability = $8/26 = 4/13$	
21	(a)	SECTION B Since HCF = 81, two numbers can be taken as 81x and 81y,	1
41	(c)	Since HCF = 81, two numbers can be taken as 81x and 81y, ATQ $81x + 81y = 1215$	1
		Or $x+y = 15$	
		which gives four co prime pairs-	
		1,14	
		2,13	
		4,11	
		7, 8	
22	(c)	Required Area is area of triangle $ACD = \frac{1}{2}(6)2$	1
	(-)	= 6 sq units	
23	(b)	$\tan \alpha + \cot \alpha = 2$ gives $\alpha = 45^{\circ}$. So $\tan \alpha = \cot \alpha = 1$	1
		$\tan^{20}\alpha + \cot^{20}\alpha = 1^{20} + 1^{20} = 1 + 1 = 2$	
24	(a)	Adding the two given equations we get: $348x + 348y = 1740$.	1
25	(c)	So $x + y = 5$ LCM of two prime numbers = product of the numbers	1
	(C)	221= 13 x 17.	
		So p= 17 & q= 13	
		∴3p - q= $51-13=38$	
26	(a)	Probability that the card drawn is neither a king nor a queen	1
		$=\frac{52-8}{52}$	
		=44/52=11/13	
27	(b)	Outcomes when 5 will come up at least once are-	1
		(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1), (5,2), (5,3), (5,4) and (5,6)	
		Probability that 5 will come up at least once = 11/36	
28	(c)	$1 + \sin^2 \alpha = 3 \sin \alpha \cos \alpha$	1
	` ,	$\sin^2\alpha + \cos^2\alpha + \sin^2\alpha = 3\sin\alpha\cos\alpha$	
		$2\sin^2\alpha - 3\sin\alpha\cos\alpha + \cos^2\alpha = 0$	
		$(2\sin\alpha - \cos\alpha)(\sin\alpha - \cos\alpha) = 0$	
		$\therefore \cot \alpha = 2 \text{ or } \cot \alpha = 1$	
29	(a)	Since ABCD is a parallelogram, diagonals AC and BD bisect each other, ∴ mid	1
	(u)	point of AC= mid point of BD	
		11 · · · · · · · · · · · · · · · · · ·	

		om viropt//obbopoloultoom/	
		$\left(\frac{x+1}{2}, \frac{6+2}{2}\right) = \left(\frac{3+4}{2}, \frac{5+y}{2}\right)$ Comparing the co-ordinates, we get, $\frac{x+1}{2} = \frac{3+4}{2}. \text{ So, } x = 6$ Similarly, $\frac{6+2}{2} = \frac{5+y}{2}. \text{ So, } y = 3$ $\therefore (x, y) = (6,3)$	
30	(c)	$\Delta ACD \sim \Delta ABC(AA)$ $\therefore \frac{AC}{AB} = \frac{AD}{AC} (CPST)$ $8/AB = 3/8$ This gives $AB = 64/3$ cm. So $BD = AB - AD = 64/3 - 3 = 55/3$ cm.	1
31	(d)	Any point (x, y) of perpendicular bisector will be equidistant from A & B. $\therefore \sqrt{(x-4)^2 + (y-5)^2} = \sqrt{(x+2)^2 + (y-3)^2}$ Solving we get $-12x - 4y + 28 = 0$ or $3x + y - 7 = 0$	1
32	(b)	$\frac{\cot y^{\circ}}{\cot x^{\circ}} = \frac{AC/BC}{AC/CD} = CD/BC = CD/2CD = \frac{1}{2}$	1
33	(a)	The smallest number by which 1/13 should be multiplied so that its decimal expansion terminates after two decimal points is $13/100$ as $\frac{1}{13}$ x $\frac{13}{100}$ = $\frac{1}{100}$ = 0.01 Ans: 13/100	1
34	(b)	ΔABE is a right triangle & FDGB is a square of side x cm $ \Delta AFD \sim \Delta DGE(AA) $ $ \therefore \frac{AF}{DG} = \frac{FD}{GE} (CPST) $ $ \frac{16 - x}{x} = \frac{x}{8 - x} (CPST) $ $ 128 = 24x \text{ or } x = 16/3\text{cm} $	1
35	(a)	Since P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1 \div coordinates of P are $(\frac{9k-1}{k+1}, \frac{8k+3}{k+1})$ Since P lies on the line x - y +2=0, then $\frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$ 9k -1 -8k-3 +2k+2 =0 which gives k=2/3	1
36	(c)	Shaded area = Area of semicircle + (Area of half square – Area of two quadrants) = Area of semicircle +(Area of half square – Area of semicircle) = Area of half square = ½ x 14 x14 = 98cm²	1

37	(d)	Let O be the center of the circle. OA = OB = AB =1cm. So \triangle OAB is an equilateral triangle and \triangle \triangle AOB =60° Required Area= 8x Area of one segment with r=1cm, Θ = 60° = $8x(\frac{60}{360} \times \pi \times 1^2 - \frac{\sqrt{3}}{4} \times 1^2)$ = $8(\pi/6 - \sqrt{3}/4)$ cm ²	1
38	(b)	Sum of zeroes = $2 + \frac{1}{2} = -5/p$ i.e. $5/2 = -5/p$. So $p = -2$ Product of zeroes = $2x \frac{1}{2} = r/p$ i.e. $r/p = 1$ or $r = p = -2$	1
39	(c)	$2\pi r = 100$. So Diameter = $2r = 100/\pi =$ diagonal of the square. $side \sqrt{2} =$ diagonal of square = $100/\pi$ \therefore side = $100/\sqrt{2\pi} = 50\sqrt{2}/\pi$	1
40	(b)	$3^{x+y} = 243 = 3^5$ So $x+y=5$ (1) $243^{x-y} = 3$ $(3^5)^{x-y} = 3^1$ So $5x - 5y = 1$ (2) Since : $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, so unique solution	1
		SECTION C	
41	(c)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48	1
42	(b)	When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ $(2t + 3) (t-2) = 0$ i.e. $t= 2$ or $t= -3/2$ Since time cannot be negative, so $t= 2$ seconds	1
43	(d)	t= -1 & t=2 are the two zeroes of the polynomial p(t) Then p(t)=k (t1)(t-2) = k(t+1)(t-2) When t = 0 (initially) h ₁ = 48ft p(0)=k(0²- 0 -2)= 48 i.e2k = 48 So the polynomial is -24(t²- t -2) = -24t² + 24t + 48.	1
44	(c)	A polynomial q(t) with sum of zeroes as 1 and the product as -6 is given by $q(t) = k(t^2 - (sum of zeroes)t + product of zeroes)$ = $k(t^2 - 1t + -6)$ (1) When t=0 (initially) $q(0) = 48ft$	1

WIIIC	aded II	om : http://cbseportal.com/	
		$q(0)=k(0^2-1(0)-6)=48$	
		i.e. $-6k = 48$ or $k = -8$	
		Putting $k = -8$ in equation (1), reqd. polynomial is $-8(t^2 - 1t + -6)$ = $-8t^2 + 8t + 48$	
45	(a)	When the zeroes are negative of each other, sum of the zeroes = 0 So, $-b/a = 0$ $-\frac{(k-3)}{-12} = 0$ $+\frac{k-3}{12} = 0$ k-3 = 0, i.e. k = 3.	1
46	(a)	Centroid of \triangle EHJ with E(2,1), H(-2,4) & J(-2,-2) is $(\frac{2+-2+-2}{3}, \frac{1+4+-2}{3}) = (-2/3, 1)$	1
47	(c)	If P needs to be at equal distance from A(3,6) and G(1,-3), such that A,P and G are collinear, then P will be the mid-point of AG. So coordinates of P will be $(\frac{3+1}{2}, \frac{6+-3}{2}) = (2, 3/2)$	1
48	(a)	Let the point on x axis equidistant from I(-1,1) and E(2,1) be (x,0) then $\sqrt{(x+1)^2 + (0-1)^2} = \sqrt{(x-2)^2 + (0-1)^2}$ $x^2 + 1 + 2x + 1 = x^2 + 4 - 4x + 1$ 6x = 3 So $x = \frac{1}{2}$. \therefore the required point is (\frac{1}{2}, 0)	1
49	(b)	Let the coordinates of the position of a player Q such that his distance from $K(-4,1)$ is twice his distance from $E(2,1)$ be $Q(x, y)$. Then $KQ: QE = 2: 1$. $Q(x, y) = (\frac{2 \times 2 + 1 \times 4}{3}, \frac{2 \times 1 + 1 \times 1}{3})$. $= (0,1)$	1
50	(d)	Let the point on y axis equidistant from B(4,3) and C(4,-1) be (0,y) then $\sqrt{(4-0)^2 + (3-y)^2} = \sqrt{(4-0)^2 + (y+1)^2}$ $16 + y^2 + 9 - 6y = 16 + y^2 + 1 + 2y$ -8y = -8 So $y = 1$. \therefore the required point is (0, 1)	1