SAMPLE QUESTION PAPER MARKING SCHEME **SUBJECT: MATHEMATICS- STANDARD** CLASS X

SECTION - A

1	(c) 35	1
2	(b) $x^2-(p+1)x + p=0$	1
3	(b) 2/3	1
4	(d) 2	1
5	(c) (2,-1)	1
6	(d) 2:3	1
7	(b) tan 30°	1
8	(b) 2	1
9	(c) $X = \frac{ay}{a+b}$	1
10	(c) 8cm	1
11	(d) $3\sqrt{3}$ cm	1
12	(d) 9π cm ²	1
13	(c) 96 cm^2	1
14	(b) 12	1
15	(d) 7000	1
16	(b) 25	1
17	(c) 11/36	1
18	(a) 1/3	1
19	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1

SECTION - B

21	Adding the two equations and dividing by 10, we get: $x+y = 10$	1/2
	Subtracting the two equations and dividing by -2 , we get: $x-y=1$	1/2
	Solving these two new equations, we get, $x = 11/2$	1/2
	y = 9/2	1/2
22	In $\triangle ABC$, $\angle 1 = \angle 2$	
	$\therefore AB = BD \dots (i)$	1/2
	Given, $AD/AE = AC/BD$	
	Using equation (i), we get	1/2
	AD/AE = AC/AB(ii)	
	In $\triangle BAE$ and $\triangle CAD$, by equation (ii), AC/AB = AD/AE	1/2
	$\angle A = \angle A$ (common)	1/2
	$\therefore \Delta BAE \sim \Delta CAD [By SAS similarity criterion]$	72
23	$\angle PAO = \angle PBO = 90^{\circ}$ (angle b/w radius and tangent)	1/2
	∠AOB = 105° (By angle sum property of a triangle)	1/2
	$\angle AQB = \frac{1}{2} \times 105^{\circ} = 52.5^{\circ}$ (Angle at the remaining part of the circle is half the	1
	angle subtended by the arc at the centre)	
24	We know that, in 60 minutes, the tip of minute hand moves 360°	
		1/2
	In 1 minute, it will move = $360^{\circ}/60 = 6^{\circ}$	
	: From 7:05 pm to 7:40 pm i.e. 35 min, it will move through = $35 \times 6^{\circ} = 210^{\circ}$	1/2
	: Area of swept by the minute hand in 35 min = Area of sector with sectorial angle θ	
	of 210° and radius of 6 cm $= 210^{\circ}$ x $= 200^{\circ}$ x $= 200^{\circ}$	1/
	$= \frac{210}{360} x \pi \times 6^{2}$ $= \frac{7}{12} x \frac{22}{7} \times 6 \times 6$	1/2
	=66cm ²	1/2

OR

Let the measure of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ be θ_1 , θ_2 , θ_3 and θ_4 respectively Required area = Area of sector with centre A + Area of sector with centre B + Area of sector with centre C + Area of sector with centre D

	$= \frac{\theta_1}{360} \times \pi \times 7^2 + \frac{\theta_2}{360} \times \pi \times 7^2 + \frac{\theta_3}{360} \times \pi \times 7^2 + \frac{\theta_4}{360} \times \pi \times 7^2$	1/2
	$= \frac{(\theta_1 + \theta_2 + \theta_3 + \theta_4)}{360} \times \pi \times 7^2$ $= \frac{(360)}{360} \times \frac{22}{7} \times 7 \times 7 \text{ (By angle sum property of a triangle)}$ $= 154 \text{ cm}^2$	1/ ₂ 1/ ₂
25	$\sin(A+B) = 1 = \sin 90$, so $A+B = 90$	1/2 1/2 1/2 1/2 1/2
	$\cos\theta = \sin\theta = 1 - \sqrt{2}$	
	$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$ Dividing the numerator and denominator of LHS by $\cos\theta$, we get $\frac{1 - \tan\theta}{1 + \tan\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$ Which on simplification (or comparison) gives $\tan\theta = \sqrt{3}$ Or $\theta = 60^{\circ}$	1/2 1/2 1/2
		1/2
•	SECTION - C	
26	Let us assume $5 + 2\sqrt{3}$ is rational, then it must be in the form of p/q where p and q are co-prime integers and $q \neq 0$	1
	i.e $5 + 2\sqrt{3} = p/q$	1/
	So $\sqrt{3} = \frac{p-5q}{2q}$ (i)	1/2
	Since p, q, 5 and 2 are integers and $q \neq 0$, HS of equation (i) is rational. But LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible.	1/2
	This contradiction has arisen due to our wrong assumption that $5 + 2\sqrt{3}$ is	
	rational. So, $5 + 2\sqrt{3}$ is irrational.	1/2
27	Let α and β be the zeros of the polynomial $2x^2$ -5x-3	
	Then $\alpha + \beta = 5/2$ And $\alpha\beta = -3/2$.	$\frac{1}{2}$ $\frac{1}{2}$
	Let 2α and 2β be the zeros $x^2 + px + q$ Then $2\alpha + 2\beta = -p$ $2(\alpha + \beta) = -p$	1/2
	$2 \times 5/2 = -p$	
	So $\mathbf{p} = -5$ And $2\alpha \times 2\beta = q$	$\frac{1/2}{1/2}$
	And $2\alpha \times 2\beta = q$ $4 \alpha \beta = q$ So $q = 4 \times -3/2$	/2
	50 q = 4 A - 3/2 = -6	1/2

28	Let the actual speed of the train be x km/hr and let the actual time taken be y hours.	1/2
	Distance covered is xy km	72
	If the speed is increased by 6 km/hr, then time of journey is reduced by 4 hours i.e.,	
	when speed is $(x+6)$ km/hr, time of journey is $(y-4)$ hours.	
	$\therefore \text{ Distance covered} = (x+6)(y-4)$	
	\Rightarrow xy=(x+6)(y-4)	
	\Rightarrow -4x+6y-24=0	1/2
	$\Rightarrow -2x+3y-12=0$ (i)	, 2
	Similarly $xy=(x-6)(y+6)$	
	\Rightarrow 6x-6y-36=0	
	⇒x-y-6=0(ii)	1/2
	Solving (i) and (ii) we get x=30 and y=24	1
	Putting the values of x and y in equation (i), we obtain	
	Distance = (30×24) km = 720 km.	1/
	Hence, the length of the journey is 720km.	1/2
	OR	
	Let the number of chocolates in lot A be x	1/2
	And let the number of chocolates in lot B be y	, -
	∴ total number of chocolates =x+y	
	Price of 1 chocolate = $\mathbf{\xi}$ 2/3, so for x chocolates = $\frac{2}{3}$ x	
	and price of y chocolates at the rate of ₹ 1 per chocolate =y.	
	\therefore by the given condition $\frac{2}{3}x + y = 400$	1./
	$\Rightarrow 2x + 3y = 1200 \dots (i)$	1/2
	Similarly $x + \frac{4}{5}y = 460$	1/
	$\Rightarrow 5x + 4y = 2300$ (ii)	1/2
	Solving (i) and (ii) we get	
	x=300 and y=200	
	$\therefore x+y=300+200=500$	1
	So, Anuj had 500 chocolates.	1/2
29	LHS: $\frac{\sin^3\theta/\cos^3\theta}{1+\sin^2\theta/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{1+\cos^2\theta/\sin^2\theta}$	1/2

$$= \frac{\sin^3\theta/\cos^3\theta}{(\cos^2\theta + \sin^2\theta)/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{(\sin^2\theta + \cos^2\theta)/\sin^2\theta}$$

$$= \frac{\sin^3\theta}{\cos^3\theta} + \frac{\cos^3\theta}{\sin^3\theta}$$

$$= \frac{\sin^4\theta + \cos^4\theta}{\cos^3\theta}$$

$$= (\frac{\sin^2\theta + \cos^2\theta}{\cos^3\theta})^2 - 2\sin^2\theta\cos^2\theta$$

$$= \frac{1 - 2\sin^2\theta\cos^2\theta}{\cos^3\theta}$$

$$= \frac{1 - 2\sin^2\theta\cos^2\theta}{\cos^3\theta}$$

$$= \frac{1}{\cos^3\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos^3\theta}$$

$$= \frac{1}{\cos^3\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos^3\theta}$$

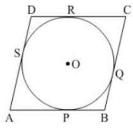
$$= \frac{1}{\cos^3\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos^3\theta}$$

$$= \frac{1}{\cos^3\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos^3\theta}$$

30

=RHS

rhombus



Let ABCD be the rhombus circumscribing the circle with centre O, such that AB, BC, CD and DA touch the circle at points P, Q, R and S respectively.

exterior point are equal in length.

We know that the tangents drawn to a circle from an exterior point are equal in length.

∴
$$AP = AS$$
......(1)

 $BP = BQ$(2)

 $CR = CQ$(3)

 $DR = DS$(4).

Adding (1), (2), (3) and (4) we get

 $AP+BP+CR+DR = AS+BQ+CQ+DS$
 $(AP+BP) + (CR+DR) = (AS+DS) + (BQ+CQ)$

∴ $AB+CD=AD+BC$ ------(5)

Since $AB=DC$ and $AD=BC$ (opposite sides of parallelogram $ABCD$)

putting in (5) we get, $2AB=2AD$

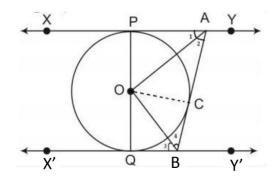
or $AB = AD$.

∴ $AB=BC=DC=AD$

1/2

Since a parallelogram with equal adjacent sides is a rhombus, so ABCD is a

OR



Join OC

In \triangle OPA and \triangle OCA

OP = OC (radii of same circle)

PA = CA (length of two tangents from an external point)

AO = AO (Common)

Therefore, \triangle OPA \cong \triangle OCA (By SSS congruency criterion)

Hence, $\angle 1 = \angle 2$ (CPCT)

Similarly $\angle 3 = \angle 4$

 $\angle PAB + \angle QBA = 180^{\circ}$ (co interior angles are supplementary as $XY \parallel X'Y'$)

 $2\angle 2 + 2\angle 4 = 180^{\circ}$

$$\angle 2 + \angle 4 = 90^{\circ}$$
 (1)

 $\angle 2 + \angle 4 + \angle AOB = 180^{\circ}$ (Angle sum property)

Using (1), we get, $\angle AOB = 90^{\circ}$

31 (i) P (At least one head) = $\frac{3}{4}$

(ii) P(At most one tail) = $\frac{3}{4}$

(iii) P(A head and a tail) = $\frac{2}{4} = \frac{1}{2}$

SECTION D

Let the time taken by larger pipe alone to fill the tank= x hours Therefore, the time taken by the smaller pipe = x+10 hours

Water filled by larger pipe running for 4 hours = $\frac{4}{x}$ litres Water filled by smaller pipe running for 9 hours = $\frac{9}{x+10}$ litres

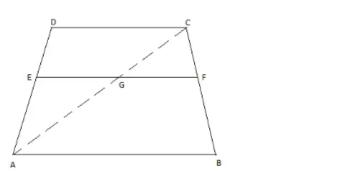
1/2

We know that $\frac{4}{x} + \frac{9}{x+10} = \frac{1}{2}$	1
Which on simplification gives: $x^2-16x-80=0$	1
$x^2-20x + 4x-80=0$ x(x-20) + 4(x-20)=0 (x + 4)(x-20)=0	
x=-4,20	1
x cannot be negative. Thus, x=20 x+10= 30	1/ ₂ 1/ ₂
Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours.	1/2
OR	
Let the usual speed of plane be x km/hr and the reduced speed of the plane be (x-200) km/hr Distance =600 km [Given] According to the question,	1/2
(time taken at reduced speed) - (Schedule time) = 30 minutes = 0.5 hours.	1
$\frac{600}{x-200} - \frac{600}{x} = \frac{1}{2}$	
Which on simplification gives: $x^2 - 200x - 240000 = 0$	1
x^{2} -600x + 400x -240000=0 x(x-600) + 400(x-600) = 0 (x-600)(x+400) = 0	
x=600 or x=-400	1 1/2
But speed cannot be negative. ∴ The usual speed is 600 km/hr and	1/2
the scheduled duration of the flight is $\frac{600}{600}$ =1hour	1/2
For the Theorem : Given, To prove, Construction and figure	1½
Proof	

33

11/2

1/2



Let ABCD be a trapezium DC||AB and EF is a line parallel to AB and hence to DC.

To prove : $\frac{DE}{EA} = \frac{CF}{FB}$

Construction: Join AC, meeting EF in G.

Proof:

In \triangle ABC, we have

GF||AB

CG/GA=CF/FB [By BPT](1)

In \triangle ADC, we have

EG||DC (EF ||AB & AB ||DC)

DE/EA= CG/GA [By BPT](2)

From (1) & (2), we get, $\frac{DE}{EA} = \frac{CF}{FR}$

34. Radius of the base of cylinder (r) = 2.8 m = Radius of the base of the cone (r)

Height of the cylinder (h)=3.5 m

Height of the cone (H)=2.1 m.

Slant height of conical part (1)= $\sqrt{r^2+H^2}$

 $=\sqrt{(2.8)^2+(2.1)^2}$

 $=\sqrt{7.84+4.41}$

 $=\sqrt{12.25}=3.5 \text{ m}$

Area of canvas used to make tent = CSA of cylinder + CSA of cone

 $= 2 \times \pi \times 2.8 \times 3.5 + \pi \times 2.8 \times 3.5$

=61.6+30.8

 $=92.4m^2$

Cost of 1500 tents at ₹120 per sq.m

 $= 1500 \times 120 \times 92.4$

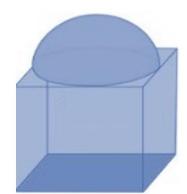
= 16,632,000

Share of each school to set up the tents = 16632000/50 = ₹332,640

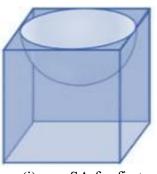
OR

1

First Solid



Second Solid



SA for first new solid (S1):

$$6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$$

= 294 + 77 - 38.5

 $= 332.5 \text{cm}^2$

SA for second new solid (S₂):

$$6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$$

$$= 294 + 77 - 38.5$$

 $= 332.5 \text{ cm}^2$

So S_1 : $S_2 = 1:1$

Volume for first new solid (V₁)= $7 \times 7 \times 7 - \frac{2}{3}\pi \times 3.5^3$ = $343 - \frac{539}{6} = \frac{1519}{6}$ cm³ Volume for second new solid (V₂)= $7 \times 7 \times 7 + \frac{2}{3}\pi \times 3.5^3$ = $343 + \frac{539}{6} = \frac{2597}{6}$ cm³ (ii)

$$= 343 - \frac{1}{6} = \frac{1}{6$$

$$= 343 + \frac{539}{6} = \frac{2597}{6} \text{ cm}^3$$

35 Median = 525, so Median Class = 500 - 600

1/	2

1

1

1

1

1

Class interval	Frequency	Cumulative Frequency
0-100	2	2
100-200	5	7
200-300	X	7+x
300-400	12	19+x
400-500	17	36+x
500-600	20	56+x
600-700	у	56+x+y
700-800	9	65+x +y
800-900	7	72+x+y
900-1000	4	76+x+y

11/2

 $76+x+y=100 \Rightarrow x+y=24 \dots (i)$

$$Median = 1 + \frac{\frac{n}{2} - cf}{f} \times h$$

Since, l=500, h=100, f=20, cf=36+x and n=100

Therefore, putting the value in the Median formula, we get;

$$525 = 500 + \frac{50 - (36 + x)}{20} \times 100$$

so x = 9

y = 24 - x (from eq.i)

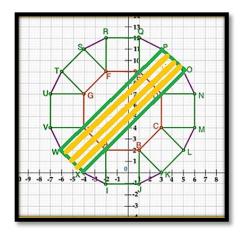
$$y = 24 - 9 = 15$$

Therefore, the value of x = 9

and
$$y = 15$$
.

36 (i) B(1,2), F(-2,9) $BF^2 = (-2-1)^2 + (9-2)^2$ $= (-3)^2 + (7)^2$ = 9 + 49 = 58So, $BF = \sqrt{58}$ units

(ii)



$$W(-6,2), X(-4,0), O(5,9), P(3,11)$$

1/2

Clearly WXOP is a rectangle

Point of intersection of diagonals of a rectangle is the mid point of the diagonals. So the required point is mid point of WO or XP

$$= \left(\frac{-6+5}{2}, \frac{2+9}{2}\right)$$

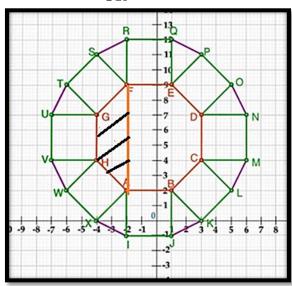
$$= \left(\frac{-1}{2}, \frac{11}{2}\right)$$

(iii) A(-2,2), G(-4,7)
Let the point on y-axis be
$$Z(0,y)$$
 $\frac{1}{2}$
 $AZ^2 = GZ^2$ $\frac{1}{2}$

$$(0+2)^2 + (y-2)^2 = (0+4)^2 + (y-7)^2$$

 $(2)^2 + y^2 + 4 - 4y = (4)^2 + y^2 + 49 - 14y$
 $8-4y = 65-14y$
 $10y = 57$
So, $y = 5.7$
i.e. the required point is $(0, 5.7)$

OR



A(-2,2), F(-2,9), G(-4,7), H(-4,4)
Clearly GH = 7-4=3units
AF = 9-2=7 units
So, height of the trapezium AFGH = 2 units
So, area of AFGH =
$$\frac{1}{2}$$
(AF + GH) x height
= $\frac{1}{2}$ (7+3) x 2
= 10 sq. units

37. (i) Since each row is increasing by 10 seats, so it is an AP with first term a= 30, and common difference d=10.

So number of seats in 10^{th} row = a_{10} = a+ 9d

$$= 30 + 9 \times 10 = 120$$
¹/₂

(ii)
$$S_n = \frac{n}{2}(2a + (n-1)d)$$

 $1500 = \frac{n}{2}(2 \times 30 + (n-1)10)$
 $3000 = 50n + 10n^2$

$$n^2 + 5n - 300 = 0$$

 $n^2 + 20n - 15n - 300 = 0$

$$(n+20)(n-15) = 0$$
 $1/2$

Rejecting the negative value, n=15OR

$$= 5(60 + 90) = 750$$
So, the number of seats still required to be put are $1500 - 750 = 750$
\frac{1}{2}

(iii) If no. of rows =17 then the middle row is the 9th row $a_8 = a + 8d$ = 30 + 80 = 110 seats $\frac{1}{2}$

38 (i)

P

Q

3000√3m

A

B

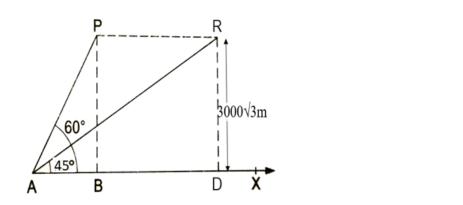
C

X

P and Q are the two positions of the plane flying at a height of $3000\sqrt{3}$ m. A is the point of observation.

(ii) In \triangle PAB, $\tan 60^{\circ}$ =PB/AB Or $\sqrt{3} = 3000\sqrt{3}$ / AB So AB=3000m 1 $\tan 30^{\circ}$ = QC/AC 1/ $\sqrt{3} = 3000\sqrt{3}$ / AC AC = 9000m 1/2 distance covered = 9000- 3000 = 6000 m.

OR



In \triangle PAB, $\tan 60^\circ$ =PB/AB Or $\sqrt{3}$ = $3000\sqrt{3}$ / AB So AB=3000m $\tan 45^\circ$ = RD/AD 1= $3000\sqrt{3}$ / AD

1/2

1

AD = $3000\sqrt{3}$ m distance covered = $3000\sqrt{3}$ - 3000 = $3000(\sqrt{3}$ -1)m.	1/2
(iii) speed = $6000/30$	1/2
= 200 m/s = 200 x 3600/1000	1/2
= 720 km/hr	72
Alternatively: speed = $\frac{3000(\sqrt{3}-1)}{15(\sqrt{3}-1)}$	1/2
=200 m/s	72
$= 200 \times 3600/1000$	1/2
=720km/hr	

