Class - X

Mathematics-Basic (241)

Sample Question Paper 2019-20

Max. Marks: 80 Duration: 3 hrs.

General Instructions:

- a) All questions are compulsory
- b) The question paper consists of 40 questions divided into four sections A, B, C & D.
- c) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- d) There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- e) Use of calculators is not permitted.

		<u>SECT</u>	ION - A		
Q 1-	10 are multiple c	hoice questions. Se	lect the most approp	riate answer from	the
given	options.				
1.	HCF of 168 and	126 is			1
	(a) 21	(b) 42	(c) 14	(d) 18	
2.	Empirical relation	nship between the th	ree measures of cent	ral tendency is	1

	(a) 2 Mean =	3 Median - Mode	9	(b) 2 Mode =	= 3
	Median - N	/lean			
	(c) Mode = 2	Mean - 3 Media	า	(d) 3 Medi	an = 2
	Mode + Mean				
3.	In the given figur	e, if TP and TQ	are tangents to	a circle with centre	e O, so 1
	that ∠POQ = 110	0°, then ∠PTQ is	S	T	
				P	
				110° Q	
	(a) 110°	(b)	90°	(>)	
	(c) 80°	(0) 70°	\ \ \	
_					
4.	325 can be expre	essed as a produ	ct of its primes	as	1
	2 -	a > -2			
	(a) $5^2 \times 7$	(b) $5^2 \times$			
	(c) 5×13 ²	(d) 2×	3°×5°		
_	0			0l- The much	L 1114.
5.			uilled deck of 52	2 cards. The proba	bility 1
	that it is black qu	ieen is			
	(a) 1	(b) 1	(a)	1	(d) ²
	(a) $\frac{1}{26}$	(b) $\frac{1}{13}$	(C)	<u>1</u> 52	(d) $\frac{2}{13}$
6.	The sum of the z	vorges of the nel	momial $2v^2$ $9v$	6 ic	1
0.	The sum of the 2	terbes or the por	/HOITHAL ZX -6X +	0 15	1
	(a) - 3	(b) 3		(c) - 4	
	(d) 4	(5) 5		(5)	
	(α)				
7.	Which of the follo	owing is the deci	mal expansion of	f an irrational numb	per 1
					•
	(a) 4.561	(b) 0. 12	(c) 5.0100100	001 (d)	6.03
		. ,	.,	(-)	

8.	The following figure shows the graph of $y = p(x)$, where $p(x)$ is a	1
	polynomial in variable x. The number of zeroes of the polynomial p(x) is	
	(a) 1 (b) 2 (c)3 (d) 4	
	у	
	0	
	×	
9.	The distance of the point D (2 1) from the origin is	1
9.	The distance of the point P (3, - 4) from the origin is	•
	(a) 7 units (b) 5 units (c)4 units	
	(d) 3 units	
10.	The mid point of the line segment joining the points (- 5, 7) and (- 1, 3) is	1
	(a) (-3, 7) (b) (-3, 5) (c) (-1, 5)	
	(d) (5, -3)	
(11 -	15) Fill in the blanks:	
44		
11.	The point which divides the line segment joining the points A (0, 5) and P (5, 0) interpally in the ratio 3:3 is	1
	B (5, 0) internally in the ratio 2:3 is	
12.	The pair of lines represented by the equations 2x+y+3 = 0 and 4x+ky+6 =	1
	0 will be parallel if value of k is	-
	· —	

OR

If the quadratic equation $x^2 - 2x + k = 0$ has equal roots, then value of k

	is	
13.	The value of $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ} $ is	1
14.	Value of cos 0°. Cos 30°.cos 45°. cos 60°. cos 90° is	1
15.	The sides of two similar triangles are in the ratio 2:3, then the areas of these triangles are in the ratio	
(16 -	20) Answer the following :	
16.	$\triangle PQR$ is right angled isosceles triangle, right angled at R. Find value of sin P.	1
	OR	
	If 15 cot A = 8, then find value of cosec A.	
17.	If area of quadrant of a circle is 38.5 cm ² then find its diameter	1
17.	(use $\pi = \frac{22}{7}$)	
18.	A dice is thrown once. Find the probability of getting a prime number.	1
19.	In the given fig. If DE BC Find EC.	1
	1.5 cm 1 cm E	

20.	Find the common difference of the A.P whose first term is 12 and fifth term is 0.	1
	SECTION - B	
21.	If two coins are tossed simultaneously. Find the probability of getting 2 heads.	2
22.	A lot of 25 bulbs contain 5 defective ones. One bulb is drawn at random from the lot. What is the probability that the bulb is good.	2
	OR	
	Two dice are thrown simultaneously at random. Find the probability of getting a sum of eight.	
23.	Prove that the tangents drawn at the ends of a diameter of a circle are parallel.	2
24.	Show that $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$.	2
	OR	
	Evaluate $\cos 48^{\circ} \cos 42^{\circ} - \sin 48^{\circ} \sin 42^{\circ}$	
25.	Find the area of circle whose circumference is 22cm.	2
26	Read the following passage and answer the questions that follows: A teacher told 10 students to write a polynomial on the black board. Students wrote	2
	1. $x^2 + 2$ 6. $x - 3$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	3. $x^3 + x^2 + 1$ 8. $x^2 + 2x + 1$	
	4. $x^3 + 2x^2 + 1$ 9. $2x^3 - x^2$	

5. $x^2 - 2x + 1$ 10.	'
(ii) Divide the polynomial $(x^2 + 2x + 1)$ by $(x + 1)$.	
SECTION C	
SECTION C	
SECTION C	
27. Find the zeroes of the quadratic polynomial $x^2 - 3x - 10$ and	I verify the 3
relationship between the zeroes and coefficient.	
28. Draw a circle of radius 4 cm. From the point 7 cm away from	m its centre, 3
construct the pair of tangents to the circle.	
OR	
Draw a line segment of length 8 cm and divide it in the rat	io 2:3
29. Following figure depicts a park where two opposite sides are	e parallel and 3
left and right ends are semi-circular in shape. It has a 7m v	wide track for
walking	
	不
	Zom
	· ·
1 Jam	
1 200	
Two friends Seema and Meena went to the park. Meena sa	id that area of
the track is 4066m ² . Is she right? Explain.	
cot A - coc A - cocce A 1	
30. Prove that $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\csc A - 1}{\csc A + 1}$	3
OR	
Prove that: $\frac{\tan A + \sin A}{\sin A} = \frac{\sec A + 1}{\sin A}$	
Prove that: ${\tan A - \sin A} = {\sec A - 1}$	

31.	Prove that $5 - \sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.	3
	OR An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?	
32.	Prove that the lengths of tangents drawn from an external point to a circle are equal.	3
33.	Read the following passage and answer the questions that follows: In a class room, four students Sita, Gita, Rita and Anita are sitting at A(3,4), B(6,7), C(9,4), D(6,1) respectively. Then a new student Anjali joins the class Rows Rows Columns	3
	(i) Teacher tells Anjali to sit in the middle of the four students. Find the coordinates of the position where she can sit.	1
	(ii) Calculate the distance between Sita and Anita.	1
		1

		_
34.	Solve $2x + 3y = 11$ and $x - 2y = -12$ algebraically and hence find the value	3
	of 'm' for which $y = mx + 3$.	
	SECTION D	
		_
35.	Find two consecutive positive integers sum of whose squares is 365.	4
36.	If the sum of first 14 terms of an A.P. is 1050 and its first term is 10,	4
	find the 20 th term.	
	OR	
	The first terms of an A.D. is 5, the last terms is 45, and some is 400. Find	
	The first term of an A.P. is 5, the last term is 45 and sum is 400. Find	
	the number of terms and the common difference.	
37.	As observed from the top of a 75m high light house above the sea level,	4
	the angles of depression of two ships are 30° and 45° respectively. If one	
	ship is exactly behind the other on the same side of the light house and	
	in the same straight line, find the distance between the two ships. (use $\sqrt{3}$ = 1.732)	
	= 1.732)	
38.	If a line is drawn parallel to one side of a triangle to intersect the other	4
30.	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided	4
	in the same ratio.	
	in the same ratio.	
	OR	
	OK .	
	State and prove the Pythagoras theorem.	
	State and prove the rythagoras theorem.	
39.	A copper rod of diameter 1 cm and length 8 cm is drawn in to a wire of	4
J7.	length 18 m of uniform thickness. Find the thickness of wire.	~
	rengar to in or annorm unchiess. Find the unchiess of whe.	
	Or	

	allic sphere of rad					shape of
a cylir	nder of radius 6 cr	m. Find th	ne height o	f the cyline	der.	
The following distribution gives the daily income of 50 workers of a						
factory	-	_	-			
J	,					
	Daily income	400-	420-440	440-460	460-480	480-500
		420				
	Number of	12	14	8	6	10
	workers					
		ı		<u> </u>		L
Conve	rt this distribution	to less th	nan type of	cumulative	e frequenc	V
	ert this distribution ution and draw its		nan type of	cumulative	e frequenc	у