	Sample Question Paper	
	Sample Question Paper	
	<u>CLASS: XII</u> Session: 2022-23	
	Applied Mathematics (Code-241)	
	Marking Scheme	
	Section – A Each question carries 1-mark weightage	
	$x \equiv 27 \pmod{4}$	
	$\Rightarrow x - 27 = 4k$, for some integer k	
1.	$\Rightarrow x = 31 \text{ as } 27 < x \le 36$	
	(C) option	
2.	(D) option	
	$n = 26 \Rightarrow t = 3.07 > t_{25}(0.05) = 2.06$	
3.	(B) option	
	$n = 34 \Rightarrow v = 34 - 1 = 33$	
4.	(B) option	
4.	(b) option	
	Speed of boat downstream = u = 10 km/h	
	And, speed of boat upstream = v = 6 km/h	
5.	\Rightarrow Speed of stream = $\frac{1}{2}$ (u – v) = 2 km/h	
	(B) option	
6.	(C) option	
	Truck A carries water = $100 - (\frac{20 \times 1500}{1000}) = 70 l$	
7.	Truck B carries water = $80 - (\frac{20 \times 1000}{1000}) = 60 l$	
/.	(C) option	
	() Pro-	
	Let the face value of the bond = x	
0	Then, $\frac{10}{200}x = 1800 \Rightarrow x = 36000$	
8.	(D) option	
9.	(C) option	
10.	(D) option	
	$D = \frac{C - S}{n} = \frac{480000 - 25000}{10} = 45500$	
11.	(B) option	
12.	(A) option	
	$\int \frac{dy}{y \log y} = \int \frac{dx}{x}$	
13.	$\Rightarrow \log(\log y) = \log x + \log C $	
	$\Rightarrow \log(\log y) = \log Cx $	
	$\Rightarrow v = e^{ Cx }$]

	(B) option	
14.	$\left[\left(\frac{60000}{10000} \right)^{\frac{1}{4}} - 1 \right] \times 100 = \left[\sqrt[4]{6} - 1 \right] \times 100$ (C) option	
15.	Cheaper 0 480 Mean 300 180 300 = 3:5 (C) option	
16.	(D) option	
17.	(C) option	
18.	(B) option	
	P(Win in one game) = P(Lose in one game) = ½	
	\Rightarrow P (Beena to win in 3 out of 4 games) = ${}^4C_3 \cdot \left(\frac{1}{2}\right)^4 = \frac{1}{4} = 25\%$	
19.	Assertion is correct and Reason is the correct explanation for it (A)option	
20.	Effective rate of interest = Nominal rate – inflation rate = 12.5 – 2 = 10.5% Assertion is correct Reason is true but not supportive of assertion (B) option	
	Section – B	
	Each question carries 2-mark weightage	
21.	P = 250000, R = 7500, $i = r/400$ $\Rightarrow 250000 = \frac{7500 \times 400}{r} \Rightarrow r = 12$	1
	$\Rightarrow r = 12$	1
22.	$a - 8 = 1 \Rightarrow a = 9$	
	$3b = -2 \Rightarrow b = -\frac{2}{3}$	1
	$-c + 2 = -28 \Rightarrow c = 30$	4
	$\Rightarrow 2a + 3b - c = -14$	1
	OR Expanding C ₁ , we get $\Delta = 1(2x^2 + 4) - 2(-4x - 20) = 86$	1
	$\Rightarrow x^2 + 4x - 21 = 0$ $\therefore x = 3, -7$	1
23.	Let the number of hardcopy and paperback copies be x and y respectively \Rightarrow Maximum profit Z = $(72x + 40y) - (9600 + 56x + 28y) = 16x + 12y - 9600$	1

	Subject to constraints:	1
	$x + y \le 960$	
	$5x + y \le 2400$	
	$x, y \ge 0$	
24.	Speed of boat in still waters = $x \text{ km/h}$	1
	Speed of stream = $y \text{ km/h}$	
	Distance travelled = d km	
	Time taken to travel downstream = $\frac{d}{x+y}$	
	Time taken to travel upstream = $\frac{d}{x-y}$	1
	Then, $\frac{2d}{x+y} = \frac{d}{x-y} \Rightarrow x : y = 3:1$	1
	OR	1
	Param runs 5 m in 3 seconds	
	\Rightarrow time taken to run 200 m = $\frac{3}{5} \times 200 = 120$ seconds	
-		1
	Anuj 's time = 120 – 3 = 117 seconds	
25.	$V_f = 437500, V_i = 350000$	1
	Nominal rate = $\frac{V_f - V_i}{V_i} \times 100$	
	V_i	
	$=\frac{437500-350000}{350000}\times100=25\%$	1
	$=\frac{350000}{350000} \times 100 = 25\%$	
	Section – C	
	Each question carries 3-mark weightage	
26.	$f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$	1
	$\Rightarrow x = 1,2,3$	
	$\Rightarrow x = 1,2,3$ Strictly increasing in $(1,2)\cup(3,\infty)$	1
	Strictly decreasing in $(-\infty,1)\cup(2,3)$	1
27.		
	Daily diet of team A = $\begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 12700 \\ 334 \end{bmatrix}$	
	Daily diet of team A = $\begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1900 & 50 \\ 334 \end{bmatrix} = \begin{bmatrix} 2300 & 71 \\ 334 \end{bmatrix}$	1.5
	L2000 54J	
	Team A consumes 12700 calories and 334 g vitamin	
	Daily diet of team B = $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 10300 \\ 273 \end{bmatrix}$	
	L2000 54J - 273 -	1.5
	Toam B consumes 10200 calories and 272 g vitamin	
	Team B consumes 10300 calories and 273 g vitamin	
28.	$\int \frac{dx}{(1+e^x)(1+e^{-x})}$ $= \int \frac{e^x dx}{(1+e^x)^2}$	
	$\int \overline{(1+e^x)(1+e^{-x})}$	
		3
	$=\int \frac{e^x dx}{(x+x^2)^2}$	
	~ (1+e^^) ²	

	$=\int rac{dt}{t^2}$, where $t=e^x+1$ and $dt=e^xdx$	
	$= \frac{-1}{t} + C$	
	$=\frac{-1}{1+e^x}+C$	
	OR	
	$\int rac{x \ log(1+x^2) dx}{I}$, Integration by parts	
	$= \log (1 + x^2) \cdot \int x dx - \int \left[\frac{d}{dx} \log(1 + x^2) \cdot \int x dx\right] dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \int \left[\frac{2x}{1 + x^2} \cdot \frac{x^2}{2} \right] dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \int \frac{x^3}{1 + x^2} dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \int [x - \frac{x}{1 + x^2}] dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \frac{x^2}{2} + \frac{1}{2} \log (1 + x^2) + C$	
	$= \frac{1}{2}[(1+x^2)\log(1+x^2) - x^2] + C$	
29.	Under pure competition, $p_d = p_s$	
	$\Rightarrow \frac{8}{x+1} - 2 = \frac{x+3}{2}$ $\Rightarrow x^2 + 8x - 9 = 0$	
	$ \Rightarrow x^2 + 8x - 9 = 0$ $ \Rightarrow x = -9, 1$	1.5
	$\therefore x = 1$	
	When $x_0 = 1 \Rightarrow p_0 = 2$	
	$\therefore \text{ Produce surplus} = 2 - \int_0^1 \frac{x+3}{2} dx = 2 - \left[\frac{x^2}{4} + \frac{3x}{2} \right] = \frac{1}{4}$	1.5
	OR	
	$p = 274 - x^2$	
	$\Rightarrow R = px = 274x - x^3$ $\frac{dR}{dx} = 274 - 3x^2$	
	$\frac{dx}{dx} = 274 - 3x$ Given MR = 4 + 3x	1.5
	In profit monopolist market,	
	$MR = \frac{dR}{dx} \Rightarrow 4 + 3x = 274 - 3x^2$	
	$\Rightarrow x^2 + x - 90 = 0$	

		1
	$\Rightarrow x = -10,9$	
	$\therefore x = 9$ When $x_0 = 9 \Rightarrow p_0 = 193$	
	$\therefore \text{Consumer surplus} = \int_0^9 (274 - x^2) dx - 193 \times 9$	
		1.5
	$= [274x - \frac{x^3}{3}]$	1.5
	0	
30.	= 486	
30.	Purchase = ₹ 40,00,000 Down payment = x	
	Balance = $40,00,000 - x$	
	$i = \frac{9}{1300} = 0.0075$, n = 25 x 12 = 300	1
	t = 1200 = 0.0073, H = 23 x 12 = 300	_
	E = ₹ 30,000	
	$\Rightarrow 30000 = \frac{(4000000 - x) \times 0.0075}{1 - (1.0075)^{-300}}$	
	$\Rightarrow 30000 = \frac{1 - (1.0075)^{-300}}{1 - (1.0075)^{-300}}$	
	$\Rightarrow 30000 = \frac{(4000000 - x) \times 0.0075}{1 - 0.1062}$	
		2
	$\Rightarrow x = 424800$ Down payment = ₹ 4,24,800	
	Down payment = (4,24,000	
31.	n = 10 x 2 = 20, S = 10,21,760, $i = \frac{5}{200}$ = 0.025, R = ?	
	$\sum_{i=1}^{n} \frac{(1+i)^n - 1}{200}$	1.5
	$S = R \left[\frac{(1+i)^n - 1}{i} \right]$ $\Rightarrow 1021760 = R \left[\frac{(1+0.025)^{20} - 1}{0.025} \right]$	
	$\Rightarrow 1021760 = R \left[\frac{(1+0.025)^{1-1}}{0.025} \right]$	
	$\Rightarrow 1021760 = R \left[\frac{1.6386 - 1}{0.025} \right]$	
	$\Rightarrow R = \left[\frac{1021760 \times 0.025}{0.6386}\right]$	
	$\Rightarrow R = 40,000$	1.5
	Mr Mehra set aside an amount of ₹ 40,000 at the end of every six months	
	Section – D	
22	Each question carries 5-mark weightage	
32.	Probability of defective bucket = 0.03 n = 100	
	m = 100 $m = np = 100 \times 0.03 = 3$	
	Let X = number of defective buckets in a sample of 100	1
	P (X = r) = $\frac{m^r e^{-m}}{r!}$, $r = 0,1,2,3,$	
	r! $r!$ $r!$ $r!$	
	(i) P (no defective bucket) = P(r = 0) = $\frac{3^0 e^{-3}}{0!}$ = 0.049	2
	(ii) P (at most one defective bucket) = $P(r = 0, 1)$	
		2
	$=\frac{3^0e^{-3}}{0!}+\frac{3^1e^{-3}}{1!}$	

		1
	= 0.049 + 0.147	
	= 0.196 OR	
	_	
	X = scores of students, $\mu = 45$, $\sigma = 5$	
	$\therefore Z = \frac{X - \mu}{\sigma} = \frac{X - 45}{5}$	1
	σ 5	
	(i) When $X = 45$, $Z = 0$	
	P(X > 45) = P(Z > 0) = 0.5	2
	\Rightarrow 50% students scored more than the mean score	2
	(ii) When $X = 30$, $Z = -3$ and when $X = 50$, $Z = 1$	
	$P(30 < X < 50) = P(-3 < Z < 1) = P(-3 < Z \le 1)$	
	$= P(-3 < Z \le 0) + P(0 \le Z < 1)$	
	$= P(0 \le Z < 3) + P(0 \le Z < 1)$	2
	= 0.4987 + 0.3413 = 0.84	-
	\Rightarrow 84% students scored between 30 and 50 marks	
	7 6 170 Stadents scored between 30 and 30 marks	
33.	Let x be the number of guests for the booking	
55.	Clearly, $x > 100$ to avail discount	
	•	2
	∴ Profit, P = $[4800 - \frac{200}{10}(x - 100)] x = 6800x - 20x^2$	
	$\Rightarrow \frac{dP}{dx} = 6800 - 40 x \Rightarrow x = 170$	
	dx	1
	d^2P	
	As $\frac{d^2P}{dx^2} = -40 < 0, \forall x$	1
	A booking for 170 guests will maximise the profit of the company	
	And, Profit = ₹ 5,78,000	1
	OR	
	P(x) = R(x) - C(x)	2
	$= 5x - (100 + 0.025x^2)$	
	$\Rightarrow P'(x) = 5 - 0.05 x \Rightarrow x = 100$	1
	As P''(x) = $-0.05 < 0$, $\forall x$	1
	∴ Manufacturing 100 dolls will maximise the profit of the company	
	And, Profit = ₹ 1,50,000	1
34.	Let the number of tables and chairs be x and y respectively	
	(Max profit) $Z = 22x + 18y$	
	Subject to constraints:	
	$x + y \le 20$	1.5
	$\begin{vmatrix} x+y \le 20 \\ 3x + 2y \le 48 \end{vmatrix}$	1.5
	$\begin{vmatrix} 3x + 2y \le 40 \\ x, y \ge 0 \end{vmatrix}$	
	\(\lambda, y \leq 0\)	

The feasible region OABCA is closed (bounded) Corner points $Z = 22 \times + 18 \text{ y}$ $O(0.0)$ O $A(0.20)$ O $A(0.20)$ O $A(0.20)$ O $A(0.20)$ O			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A(0, 20) B(8, 12) $y \ge 0$ $x + y \le 20$	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Buying 8 tables and 12 chairs will maximise the profit 35. $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ $\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exists}$ $And A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 100 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 100 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ Section — E Each Case study carries 4-mark weightage 36. CASE STUDY - I a) Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th $\Rightarrow \text{ time taken to fill tank completely} = 10 \text{ hours}$			1, -
Buying 8 tables and 12 chairs will maximise the profit 35. $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ $\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exists}$ $And A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$ $AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 100 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 100 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ Section – E Each Case study carries 4-mark weightage 36. CASE STUDY - I a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 b) Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours			1.5
35. $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ $\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exists}$ $And A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$ $\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ Section – E Each Case study carries 4-mark weightage 36. CASE STUDY - I a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 b) Part of tank filled in 1 hour $= \frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours			
$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ $\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exists}$ $And A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$ $AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $Section - E$ Each Case study carries 4-mark weightage $36. CASE STUDY - I$ a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 b) Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th $\Rightarrow \text{ time taken to fill tank completely} = 10 \text{ hours}$	25	Buying 8 tables and 12 chairs will maximise the profit	
$Ax = B \Rightarrow X = A^{-1}B$ $AX = B \Rightarrow X = A^{-1}B$ $AX = \frac{1}{9}\begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 100 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 100 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ 3 $AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{9}\begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 100 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow x = \frac{1}{9}\begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 100 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 100 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = $	33.	$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$	
$\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$ $\Rightarrow \text{Section - E}$ Each Case study carries 4-mark weightage $36. \text{CASE STUDY - I}$ a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 b) Part of tank filled in 1 hour $= \frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours		⇒ $ A = 9$ ⇒ A^{-1} exists And $A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$	2
Each Case study carries 4-mark weightage 36. CASE STUDY - I a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours		$\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$	3
36. CASE STUDY - I a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours			
a) Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours 1 Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours 1			
Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th b) \Rightarrow time taken to fill tank completely = 10 hours	36.		
b) ⇒ time taken to fill tank completely = 10 hours 1	a)		1
c) At 5 am, 2	b)		1
	c)	At 5 am,	2

Let the tank be completely filled in 't' hours ⇒pipe A is opened for 't' hours pipe B is opened for 't-3' hours And, pipe C is opened for 't-4' hours

 \Rightarrow In one hour, part of tank filled by pipe A = $\frac{t}{15}$ th part of tank filled by pipe B = $\frac{t-3}{15}$ th and, part of tank emptied by pipe $C = \frac{t-4}{15}$ th

Therefore
$$\frac{t}{15} + \frac{t-3}{12} - \frac{t-4}{20} = 1$$

Total time to fill the tank = 10 hours 30 minutes

OR

6 am, pipe C is opened to empty 1/2 filled tank

Time to empty = 10 hours

Time for cleaning = 1 hour

Part of tank filled by pipes A and B in 1 hour= $\frac{1}{15} + \frac{1}{12} = \frac{3}{20}$ th tank

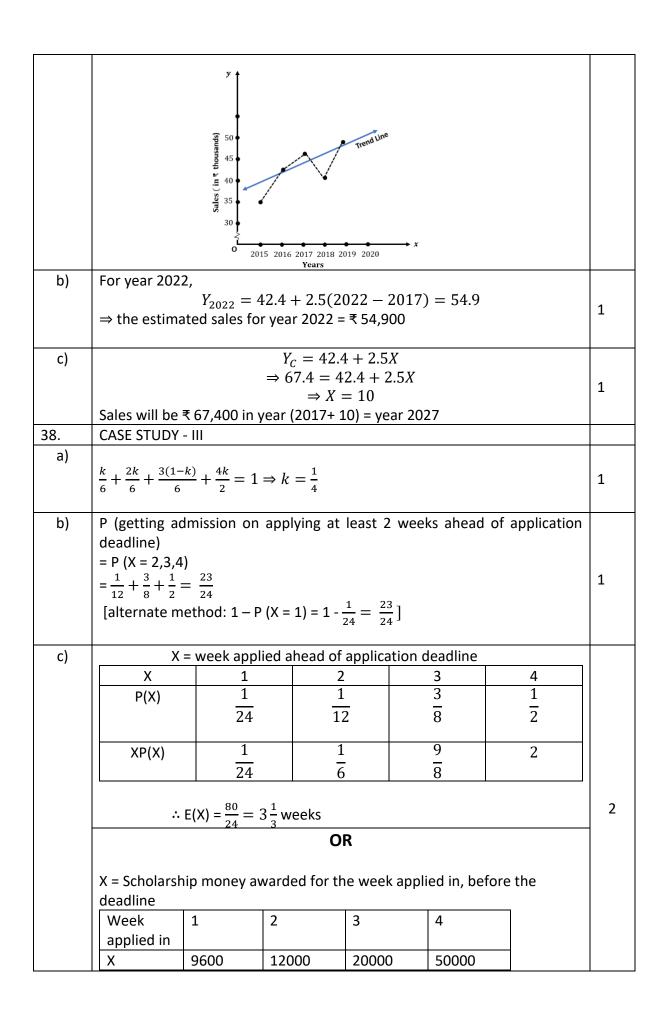
⇒ time taken to fill the tank completely = $\frac{20}{3}$ hours Total time taken in the process = $10 + 1 + \frac{20}{3} = 17$ hour 40 minutes

CASE STUDY - II 37.

a)

Year	Υ	Χ	X ²	XY
2015	35	-2	4	-70
2016	42	-1	1	-42
2017	46	0	0	0
2018	41	1	1	41
2019	48	2	4	96
	212		10	25

$$a = \frac{\sum Y}{n} = \frac{212}{5} = 42.4$$
 and $b = \frac{\sum XY}{\sum X^2} = \frac{25}{10} = 2.5$


 $Y_C = 42.4 + 2.5X$

OR

Year	Υ	3-year moving average		
2015	35	-		
2016	42	41		
2017	46	43		
2018	41	45		
2019	48	-		

2

Downloaded From : https://cbseportal.com/papers

P(X)	1	1	3_	1_	
XP(X)	9600	12 12000	8 60000	2 50000	
	24	12	8	2	
∴ E(X) = ₹ 33,	900				
