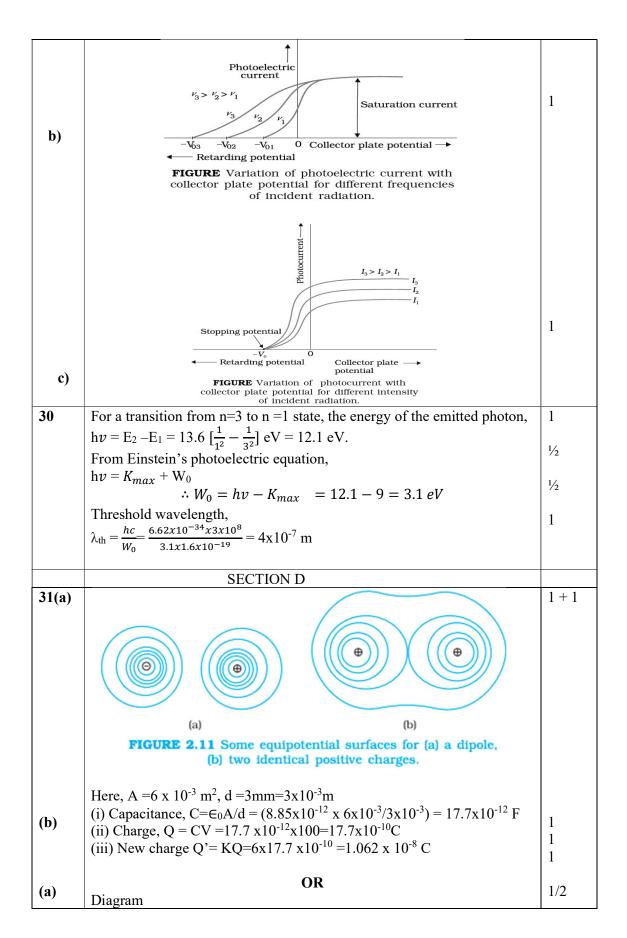
Class: XII SESSION : 2022-2023 MARKING SCHEME

CBSE SAMPLE QUESTION PAPER (THEORY)

SUBJECT: PHYSICS

Q.no	0		
	SECTION A		
1	(ii) q ₁ q ₂ <0		
2	(iv) zero	1	
3	(ii) material A is germanium and material B is copper	1	
4	(iv) 6A in the clockwise direction	1	
5	(iii) 4:3	1	
6	(i) decreases	1	
7	(ii) increase	1	
8	(iv) Both electric and magnetic field vectors are parallel to each other.		
9	(ii) the circular and elliptical loops	1	
10	(iv) 0.85	1	
11	(iii) 3000 Å	1	
12	(iv) 4.77 X 10 ⁻¹⁰ m	1	
13	(ii) The nuclear force is much weaker than the Coulomb force .	1	
14	(i) 30 V	1	
15	(i)	1	
16	c) A is true but R is false	1	
17	c) A is true but R is false	1	
18	a) Both A and R are true and R is the correct explanation of A	1	
	SECTION B		
19	λ_1 -Microwave	1/2	
	λ_2 - ultraviolet	1/2	
	λ_{3-} infrared	1/2	
	Ascending order - $\lambda_2 < \lambda_3 < \lambda_1$	1/2	
20	A - diamagnetic	1/2	
	B- paramagnetic	1/2	
	The magnetic susceptibility of A is small negative	1/2	
21	and that of B is small positive.	1/2	
21	From the relation $R = R_0 A^{1/3}$, where R_0 is a constant and A is the mass number of a nucleus	1/2	
	$R_{Fe}/R_{Al} = (A_{Fe}/A_{Al})^{1/3}$		
	K FØ KAI (AFØ AAI)/3		
	$=(125/27)^{1/3}$	1/2	
	$R_{Fe} = 5/3 R_{Al}$		
	$=5/3 \times 3.6$	1/2	
	= 6 fermi	1/2	
	OR		
	Given short wavelength limit of Lyman series		

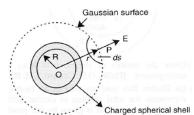
	$\frac{1}{\lambda_L} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$ $\frac{1}{913.4 \text{ Å}} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$	1/2		
	$\lambda_{\rm L} = \frac{1}{R} = 913.4 \text{ Å}$	1/2		
	For the short wavelength limit of Balmer series $n_1=2, \ n_2=\infty$ $\frac{1}{\lambda_B}=R\left(\frac{1}{2^2}-\frac{1}{\infty}\right)$	1/2		
	$\lambda_B = \frac{4}{R} = 4 \times 913.4 \text{ Å}$ = 3653.6 Å	1/2		
22	$= 3653.6 \text{ Å}$ $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2		
	$\frac{1}{f} = \left(\frac{\mu_m}{\mu_w} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2		
	$\frac{\mu_m}{\mu_w} = \frac{1.25}{1.33}$ $\frac{\mu_m}{m} = 0.98$			
	The value of $(\mu - 1)$ is negative and 'f' will be negative. So it will behave like diverging lens.	1/2		
23	To keep the reading of ammeter constant value of R should be increased as with the increase in temperature of a semiconductor, its resistance decreases and current tends to increase.	1		
	OR			
	B - reverse biased In the case of reverse biased diode the potential barrier becomes higher	1/2		
	as the battery further raises the potential of the n side.	1/2		
	C -forward biased Due to forward bias connection the potential of P side is raised and hence	1/2		
	the height of the potential barrier decreases.	1/2		
24	Angular width $2\phi = 2\lambda/d$ Given $\lambda = 6000 \text{ Å}$	1/2		
	In Case of new λ (assumed λ ' here),	1/2		
	angular width decreases by 30% New angular width = $0.70 (2 \varphi)$	1/2		
	$2 \lambda'/d = 0.70 X (2 \lambda/d)$			
	∴λ'= 4200 Å	1/2		



25	Surface charge density of plate A = +17.7 × 10 ⁻²² C/m ² Surface charge density of plate B = -17.7 × 10 ⁻²² C/m ² (a) In the outer region of plate I, electric field intensity E is zero. (b)Electric field intensity E in between the plates is given by relation $E = \frac{\sigma}{\epsilon_0}$ Where, $\epsilon_0 = \text{Permittivity of free space} = 8.85 \times 10^{-12} \text{N}^{-1} \text{C}^2 \text{m}^{-2}$	1/2 1/2
	$\therefore E = \frac{17.7 \times 10^{-22}}{8.85 \times 10^{-1}}$	1/2
	Therefore, electric field between the plates is 2.0 x 10 ⁻¹⁰ N/C	, 2
26	SECTION C	1/
26	Diagram Derivation The ampere is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would exert on each of these conductors a force equal to 2×10^{-7} newtons per metre of length.	1 ½
27	Area of the circular loop = πr^2	
	$= 3.14 \times (0.12)^2 \text{ m}^2 = 4.5 \times 10^{-2} \text{ m}^2$	
	$E = -\frac{d\varphi}{dt} = -\frac{d}{dt} (BA) = -A \frac{dB}{dt} = -A \cdot \frac{B_2 - B_1}{t_2 - t_1}$	1/2
	For $0 < t < 2s$	
	$E_1 = -4.5 \times 10^{-2} \times \left\{ \frac{1-0}{2-0} \right\} = -2.25 \times 10^{-2} \text{ V}$	
	$I_1 = \frac{E_1}{R} = \frac{-2.25 \times 10^{-2}}{8.5} \text{ A} = -2.6 \times 10^{-3} \text{ A} = -2.6 \text{ mA}$	1/2
	For $2s < t < 4s$, $E_2 = -4.5 \times 10^{-2} \times \left\{ \frac{1-1}{4-2} \right\} = 0$	1/2
	$I_2 = \frac{E_2}{R} = 0$	
	For $4s < t < 6s$,	
	$I_3 = -\frac{4.5 \times 10^{-2}}{8.5} \times \left\{ \frac{0-1}{6-4} \right\} A = 2.6 \text{ mA}$	1/2

		0 <t<2s< th=""><th>2<t<4s< th=""><th>4<t<6s< th=""><th></th></t<6s<></th></t<4s<></th></t<2s<>	2 <t<4s< th=""><th>4<t<6s< th=""><th></th></t<6s<></th></t<4s<>	4 <t<6s< th=""><th></th></t<6s<>	
	E(V)	-0.023	0	+0.023	
	I(mA)	-2.6	0	+2.6	
	I(IIIA)	1	U	12.0	
	1 (mA) O 2 4 6 t(s)				
	-2.6	'			1
28	Derivation				2
	E_0 I_0 $\pi/2$ π			1	
	OR Derivation				
	$ \uparrow V_0 + V$			1	
29	From the observat	200000000	A and B) on the bas	sis of Einstein's	
	From the observations made (parts A and B) on the basis of Einstein's photoelectric equation, we can draw following conclusions: 1. For surface A, the threshold frequency is more than 10 ¹⁵ HZ, hence no photoemission is possible.			ions:	1
	2. For surface B the threshold frequency is equal to the frequency of given radiation. Thus, photo-emission takes place but kinetic energy of photoelectrons is zero.			1	
	3. For surface	e C, the threshold the sion occurs and ph	frequency is less th		1
			OR		
a)	A - cut off or stop X - anode potentia				1/ ₂ 1/ ₂

$$\frac{K(-q)Q}{x} + \frac{kQ(-q)}{x} + \frac{k(-q)(-q)}{2x} = 0$$


1

$$\frac{-2kqQ}{x} + \frac{kq^2}{2x} = 0 \text{ or } \frac{kq^2}{2x} = \frac{2kqQ}{x}$$

$$q = 4Q$$
 or $\frac{Q}{q} = \frac{1}{4}$

1/2

(b) Electric field due to a uniformly charged thin spherical shell:

 $\frac{1}{2}$

When point P lies outside the spherical shell: Suppose that we have calculate field at the point P at a distance r (r>R) from its centre. Draw Gaussian surface through point P so as to enclose the charged spherical shell. Gaussian surface is a spherical surface of radius r and centre O.

Let \vec{E} be the electric field at point P, then the electric flux through area element of area \vec{ds} is given by

$$d\varphi = \vec{E}.\overrightarrow{ds}$$

1/2

Since \overrightarrow{ds} is also along normal to the surface

$$d\varphi = E dS$$

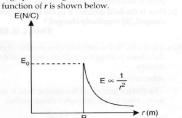
 \therefore Total electric flux through the Gaussian surface is given by

$$\varphi = \oint E ds = E \oint ds$$
Now,
$$\oint ds = 4 \pi r^2 ...(i)$$

$$= Ex4 \pi r^2$$

Since the charge enclosed by the Gaussian surface is q, according to the Gauss's theorem,

$$\varphi = \frac{q}{\epsilon_0} \dots (ii)$$


From equation (i) and (ii) we obtain

$$E \times 4 \pi r^2 = \frac{q}{\epsilon_0}$$

$$E = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r^2} \text{ (for r>R)}$$

(ii)

graph showing the variation of electric field as a

1

 $\frac{1}{2}$

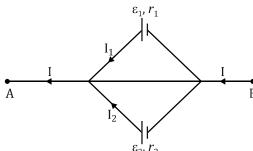
 $1\frac{1}{2}$

3

1

1

32(a)	Drift velocity: It is the average velocity acquired by the free electrons	1/2
	superimposed over the random motion in the direction opposite to	
	electric field and along the length of the metallic conductor.	


Derivation
$$I = ne A V_d$$

(b) Here,
$$I = I_1 + I_2$$
 ...(*i*)

Let V = Potential difference between A and B.

For cell ε_1

Then, V=
$$\varepsilon_1 - I_1 r_1 \implies I_1 = \frac{\varepsilon_1 - V}{r_1}$$

Similarly, for cell ε_2 $I_2 = \frac{\varepsilon_2 - V}{r_2}$

Putting these values in equation (i)

$$I = \frac{\varepsilon_1 - V}{r_1} + \frac{\varepsilon_2 - V}{r_2}$$

$$I = \left(\varepsilon_1 + \varepsilon_2\right) \quad V \left(1 + 1\right)$$

or
$$I = \left(\frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

or
$$V = \left(\frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right) \qquad \dots (ii)$$

Comparting the above equation with the equivalent circuit of emf ' ε_{eq} ' and internal resistance ' r_{eq} ' then,

$$V = \varepsilon_{\rm eq} - I r_{\rm eq} \qquad \qquad ...(iii)$$

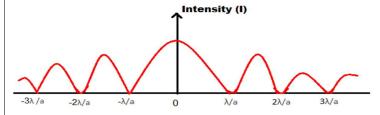
Then

(i)
$$\varepsilon_{\text{eq}} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} \qquad (ii) \qquad r_{\text{eq}} = \frac{r_1 r_2}{r_1 + r_2}$$

(iii) The potential difference between A and B

$$V = \varepsilon_{\rm eq} - Ir_{\rm eq}$$

Junction rule: At any junction, the sum of the currents entering the junction is equal to the sum of currents leaving the junction


Loop rule: The algebraic sum of changes in potential around any closed

loop involving resistors and cells in the loop is zero
Derivation

3

33(a)



Diffraction angle (θ)

Width of central maximum is twice that of any secondary maximum

1

(b)

Given:
$$\angle A = 60^{\circ}$$
, $\angle i = 0^{\circ}$

At M : Sin C = $\frac{1}{\mu} = \frac{\sqrt{3}}{2} = \sin 60^{\circ}$ \therefore C = 60°

So the ray PM after refraction from the face AC grazes along AC.

From
$$\angle i + \angle e = \angle A + \angle \delta$$

Or $0^0 + 90^0 = 60^0 + \angle \delta$

$$.. \delta = 90^{0} - 60^{0} = 30^{0}$$

(a)

(i) The interference pattern has a number of equally spaced bright and dark bands. The diffraction pattern has a central bright maximum which is twice as wide as the other maxima. The intensity falls as we go to successive maxima away from the centre, on either side.

1

1

(ii) We calculate the interference pattern by superposing two waves originating from the two narrow slits. The diffraction pattern is a superposition of a continuous family of waves originating from each point on a single slit.

(b)

(i)
$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} = \frac{\sin\left(\frac{60+30}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)} = \sqrt{2}$$

 $1\frac{1}{2}$

Also
$$\mu = \frac{c}{v} \implies v = \frac{3 \times 10^8}{\sqrt{2}} m/s$$

	(ii) At face AC, let the angle of				
	incidence be r_2 . For grazing ray,				
	$e = 90^{\circ}$				
	$\Rightarrow \mu = \frac{1}{\sin r_2} \Rightarrow r_2 = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$	1½			
	Let angle of refraction at face AB be r_I .				
	Now $r_1 + r_2 = A$				
	$\therefore r_1 = A - r_2 = 60^\circ - 45^\circ = 15^\circ$				
	Let angle of incidence at this face be <i>i</i>				
	$\mu = \frac{\sin i}{\sin r_1} \implies \sqrt{2} = \frac{\sin i}{\sin 15^\circ}$				
	1				
	$\therefore i = \sin^{-1}\left(\sqrt{2} \cdot \sin 15^{\circ}\right) = 21.5^{\circ}$				
	SECTION E				
34(i)	When the image is formed at infinity, we can see it with minimum strain	1			
	in the ciliary muscles of the eye.				
(ii)	The multi-component lenses are used for both objective and the eyepiece				
	to improve image quality by minimising various optical aberrations in lenses.				
(iii)	(a) The compound microscope is used to observe minute nearby objects	1			
	whereas the telescope is used to observe distant objects.				
	(b) In compound microscope the focal length of the objective is lesser				
	than that of the eyepiece whereas in telescope the focal length of the				
	objective is larger than that of the eyepiece.				
(iii)	OR (a) The image formed by reflecting type telescope is brighter than that	1			
(111)	formed by refracting telescope.	1			
	(b) The image formed by the reflecting type telescope is more magnified	1			
	than that formed by the refracting type telescope.				
35(i)	LEDs are made up of compound semiconductors and not by the	1			
	elemental conductor because the band gap in the elemental conductor has a value that can detect the light of a wavelength which lies in the infrared				
	(IR) region.				
(ii)	1.8 eV to 3 eV	1			
1		1 -			

(iii)

reverse biasing.

1 2

1 + 1

V-I Characteristic curves of pn junction diode in forward biasing and

LED is reversed biased that is why it is not glowing.