Class -XII PHYSICS SQP Marking Scheme 2019-20

	Section – A		
1.	a, $\phi = \frac{q}{6 \in 0}$ (for one face)	1	
2.	b, Conductor	1	
3.	a, 1Ω .	1	
1	c ,12.0kJ	1	
4.	C,12.0K)	1	
5.	a, speed	1	
6.	d, virtual and inverted	1	
7.	a, straight line	1	
8.	d, 60 °	1	
9.	b, work function	1	
10.	b, third orbit	1	
11.	45° or vertical	1	
12.	2 H	1	
12.		1	
13.	double	1	
1.4	1.227 A°	1	
14.	1.227 A ^o	1	
15.	60°	1	
16.	Difference in initial mass energy and energy associated with mass of products	1	
10.	Or	1	
	Total Kinetic energy gained in the process		
17.	Increases	1	
1/.			
18.	N _o /8	1	
19.	0.79 eV	1	
20.	Diodes with band gap energy in the visible spectrum range can function as LED	1	

		Τ
	OR	
	Any one use Section – B	
	Section - D	
21.	When electric field E is applied on conductor force acting on free electrons $\vec{F} = -e \vec{E}$ $m\vec{a} = -e \vec{E}$	
	$\vec{a} = \frac{-e\vec{E}}{m}$ Average thermal velocity of electron in conductor is zero $(u_t)_{av} = 0$ Average velocity of electron in conductors in τ (relaxation time) = v_d (drift velocity) $v_d = (u_t)_{av} + a \tau$ $v_d = 0 + \frac{-e\vec{E}\tau}{m}$	1
	$\overrightarrow{\mathbf{v}_{\mathbf{d}}} = \frac{-s\overrightarrow{E}\tau}{m}$	1
22.	$C_2 = 2\mu F$	
	$c_{1} = 1\mu F$ $c_{1} = 1\mu F$ $c_{2} = C_{3}$ $c_{5} = 2\mu F$	
	C ₂ and C ₃ are in series $\frac{1}{c!} = \frac{1}{2} + \frac{1}{2} = 1$ $c' = 1\mu f$ $c' \& C_4 \text{ are in } $ $C'' = 1 + 1 = 2\mu f$ $C'' \& c_5 \text{ are in series}$ $\frac{1}{c'''} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c'''' = 1\mu f$ $c'''' \& c_1 \text{ are in } $	1
	$C_{eq} = 1 + 1 = 2\mu f$ Energy stored $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$	1
	= 36×10 ⁻⁶ J	

23.	Gain in KE of particle = Qv	
	$\frac{1}{2}m_{p}v_{p}^{2} = K_{P} = q_{p}V_{p} - \cdots (i)V_{p} = V_{\infty} = V$ $\frac{1}{2}m_{\infty}v_{n}^{2} = K_{\infty} = q_{\infty}V_{\infty} - \cdots (ii)$	1
	(ii)/(i) $\frac{m_{x}v_{x}^{2}}{m_{y}v_{p}^{2}} = \frac{q_{x}}{q_{y}} = \frac{2}{1}$ $v_{x}^{2} m_{y} \times 2 2m_{y} 1$	1
	$\frac{v_{\infty}^{2}}{v_{p}^{2}} = \frac{m_{p} \times 2}{m_{\alpha} \times 1} = \frac{2m_{p}}{4m_{p} \times 1} = \frac{1}{2}$ $V_{\alpha} : V_{p} = 1 : \sqrt{2}$	
24.	"The angle of incidence at which the reflected light is completely plane polarized, is called as Brewster's angle (i_B)	
	Rare	1
	At $i = i_B$, reflected beam 1 to refracted beam $ \begin{array}{l} \therefore i_B + r = 90 \Longrightarrow r = 90 \text{-}i_B \\ \text{Using snell's law} \\ & \frac{Sin \ i}{Sin \ r} = \mu \\ & \frac{Sin \ i_B}{Sin \ (90 - i_B)} = \mu \Longrightarrow \frac{Sin \ i_B}{Cos \ i_B} = \mu \\ & \mu = tan \ i_B \end{array} $	1
25.	wave function $\omega = 2.14 eV$ (a) Threshold frequency $\omega = hv_0$	
	$v_0 = \frac{\omega}{h} = \frac{2.14 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}}$	1

	$= 5.17 \times 10^{14} H_z$ (b) As $k_{max} = eV_0 = 0.6eV$ Energy of photon $E = k_{max} + \omega = 0.6eV + 2.14eV$ $= 2.74eV$ Wave length of photon $\lambda = \frac{\hbar c}{E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{-8}}{2.74 \times 1.5 \times 10^{-19}}$ = 4530 Å	1
26.	V_n electron	
	centripetal force = electrostatic attraction $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\epsilon 0} \frac{e^2}{r_n^2}$	1
	$mv_n^2 = \frac{1}{4\pi\epsilon 0} \frac{e^2}{r_n} - \cdots - (i)$ $asmv_n r_n = n \cdot \frac{h}{2n}$ $v_n = \frac{n \cdot h}{2\pi m r_n} \text{ put in (i)}$ $m \cdot \frac{n^2 h^2}{4\pi^2 m^2 r_n^2} = \frac{1}{4\pi\epsilon 0} \frac{e^2}{r_n}$ $r_n = \frac{\epsilon 0 n^2 h^2}{\pi m \epsilon^2}$	1
	OR Energy of electron in n = 2 is -3.4eV	
	∴ energy in ground state = -13.6eV $E_n = \frac{x}{x^2} \Rightarrow -3.4eV = \frac{x}{2^2} \Rightarrow$ energy in ground state $x = -13.6eV$.	1

	PE = 2TE = -2×13.6eV = -27.2eV		1
27.			Any 2x1 =1
	P-type semiconductor n-t	type semiconductor	_1
		ensity of >>density of holes	
	2. Formed by doping trivalent impurity 2. formed impurity	l by doping pentavalent ity	
		and diagram of n-type	
		СВ	
	Eg	O O O O O O O O O O O O O O O O O O O	
	VB	VB	
	OR		
	· 		
	Energy of photon E = $\frac{hc}{\lambda} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{6000 \times 10^{-3} \times 1.6 \times 10^{-12}} \text{eV} = 2.06$	беV	1
	As E <e<math>_{\rm g} (2.8eV), so photodiode cannot detect this photo</e<math>	on.	1
	<u>Section – C</u>		
28.			
20.	Principle of potentiometer, when a constant current flo area of cross-section, the potential drop across any leng proportional to the length.		
	Let resistance of wire AB be R ₁ and its length be	e 'l' then current drawn from	
	driving cell – $I = \frac{v}{R+R1} $ and hence		1
	P.D. across the wire AB will	be	
	$V_{AB} = IR_1 = \frac{V}{R + R1} \times \frac{e^{I\Theta}}{a}$		
	Where 'a' is area of cross-section of	of wire AB	1
	$\therefore \frac{VAB}{l} = \frac{VQ}{(R+R1)_{c}} = constant = \frac{VAB}{l} = \frac{VQ}{l} = \frac{l}{l} = \frac{VQ}{l} = \frac{l}{l} = \frac{l}{$	= k	
	Where R increases, current and potential diffe		1
			5

29. Idl N d By dBx dBx M dBy N dBy dBy M	1
According to Biot-Savart's law, magnetic field due to a current element is given by $\overrightarrow{dB} = \frac{\mu 0}{4\pi} \frac{1 \overrightarrow{di} \times \widehat{r}}{r^2} \text{where } r = \sqrt{x^2 + a^2}$ $\therefore dB = \frac{\mu 0}{4\pi} \frac{I dl \sin 90^{\circ}}{x^2 + a^2}$ And direction of \overrightarrow{dB} is \bot to the plane containing \overrightarrow{ldl} and \overrightarrow{r} . Resolving \overrightarrow{dB} along the x – axis and y – axis.	1/2
$dB_x = dB \sin \theta$	
$dB_y = dB \cos \theta$	
taking the contribution of whole current loop we get	
$B_x = \oint dB_x = \oint dB \sin \theta = \int \frac{\mu \theta}{4\pi} \frac{Idl}{x^2 + \alpha^2} \frac{\alpha}{\sqrt{x^2 + \alpha^2}}.$ $B_x = \frac{\mu \theta}{4\pi} \frac{I_n}{(x^2 + \alpha^2)^{8/2}} \oint dl = \frac{\mu \theta}{4\pi} \frac{I_n \times 2\pi\alpha}{(x^2 + \alpha^2)^{8/2}}.$ And $B_y = \oint dB_y = \oint dB \cos \theta = 0$	1/2
$\therefore B_{P} = \sqrt{B_{x}^{2} + B_{y}^{2}} = B_{x} = \frac{\mu 0}{4\pi} \frac{2IA}{(x^{2} + a^{2})^{3/2}}$ $\therefore \overrightarrow{B_{P}} = \frac{\mu 0}{4\pi} \frac{2mi}{(x^{2} + a^{2})^{3/2}} (\because \overrightarrow{m}' = I\overrightarrow{A})$ For centre $x = 0$ $\therefore \overrightarrow{B_{o}} = \frac{\mu 0}{4\pi} \frac{2I\pi a^{2}}{a^{3}} = \mu_{0} \left(\frac{I}{2a}\right) \text{ in the direction of } \overrightarrow{m}$	1

30.	v resonant frequency for LCR circuit is given by $v_0 = \frac{1}{2\pi\sqrt{LC}}$	1
	=1	
	2×3.14√3×27×10 ⁻⁸	
	= 17.69Hz	
	Or $\omega_0 = 2\pi v_0 = 111$ rad/s.	1
	∵ quality factor of resonance	-
	$Q = \frac{\omega_0}{2\Delta w} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$	
	$\therefore Q = \frac{1}{7.4} \sqrt{\frac{3}{27 \times 10^{-6}}} = 45.0$	
	To improve sharpness of resonance circuit by a factor 2, without reducing ω_0 ; reduce R to half of its value i.e. R = 3.7Ω	1
31.	G $r = 39.4^{\circ}$ R $r = 39.4^{\circ}$	1
	Two conditions for T IR – (a) Light must travel from denser to rarer medium (b) $i > i_c$	1
	∴ Angle of incidence at face AC is 45° which is more than the critical angle for Blue	1

- \because Angle of incidence at face AC is 45° which is more than the critical angle for Blue and Green colours therefore they will show TIR but Red colour will refract to other medium.
- 32. Resolving power (R.P) of an astronomical telescope is its ability to form separate images of two neighboring astronomical objects like stars etc.

R.P. = $\frac{1}{d\theta} = \frac{D}{1.22\lambda}$ where D is diameter of objective lens and λ is wave length

of light used.

D = 100inch = 2.54×100 cm = 254cm

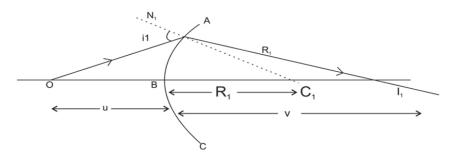
= 2.54m

Limit of resolution $d\theta = \frac{1.22\lambda}{D}$

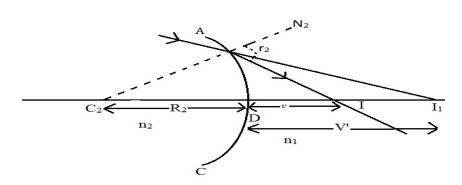
1

1

 $=\frac{1.22\times6000\times10^{-10}m}{254\times10^{-2}m}$


 $= 2.9 \times 10^{-10}$

<u>OR</u>


Basic assumptions in derivation of Lens-maker's formula:

- (i) Aperture of lens should be small
- (ii) Lenses should be thin
- (iii) Object should be point sized and placed on principal axis.

1

1

Suppose we have a thin lens of material of refractive index n2, placed in a medium of refractive index n_1 , let $0 \text{ be } a_n$.

at surface ABC we get image at I_1 , $\therefore \frac{n_2}{v^2} - \frac{n_1}{u} = \frac{n_2 - n_2}{R_1} - \dots (1)$ refractive index n₁, let o be a point object placed on principle axis then for refraction

But the refracted ray before goes to meet at I₁ falls on surface ADC and refracts at I₂

	finally; hence I ₁ works as a virtual object 2 nd refracting surface	
	$\therefore \frac{n_1}{V} - \frac{n_2}{V^1} = \frac{n_2 - n_2}{R_n} - \dots (2)$	
	Equation (1) + (2)	
	$\frac{n_1}{v} \cdot \frac{n_2}{u} = (n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ $\therefore \frac{1}{v} - \frac{1}{u} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) - \cdots - (3)$ If $u = \infty$, $v = f$ $\frac{1}{f} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) - \cdots - (4)$ Which is lens maker's formula.	1
33.	$^{228}_{92}U \rightarrow ^{237}_{91}Pa + ^{1}_{1}H + Q$	
55.	$\mathbf{P} \mathbf{Q} = [\mathbf{M}_{\mathrm{U}} - \mathbf{M}_{\mathrm{Pa}} - \mathbf{M}_{\mathrm{H}}] \mathbf{C}^{2}$	1
	= $[238.05079 - 237.05121 - 1.00783] u \times c^2$	
	$= -0.00825u \times 931.5 \frac{MaV}{u}$	1
	= - 7.68MeV • Q < 0; therefore it can't proceed spontaneously. We will have to supply energy of	1
	7.68MeV to ²³⁸ Unucleus to make it emit proton.	
	92	
0.4		
34.	Circuit Diagram	
	A D ₁ V _O R ₁ X D ₂	1
	One possible answer: Change the connection of R from point C to point B.	2
	Now No Current flowing through D_2 in the second half.	
	1 mark for any correct diagram 2 marks for correct explanation	

	Section - D	
35. (a)	$ \uparrow \qquad \qquad \downarrow \vec{E} \qquad \qquad \downarrow $	1
	According the Gauss's law - $\oint_{N} d\vec{s} = \frac{1}{\epsilon_0} \{q\}$ $\int \vec{E} d\vec{s_1} + \int \vec{E} d\vec{s_2} + \int \vec{E} d\vec{s_3} = \frac{1}{\epsilon_0} (\lambda L)$ $\int Eds_1 Cos0 + \int Eds_2 Cos90^\circ + \int Eds_3 Cos90^\circ = \frac{\lambda L}{\epsilon_0}$ $E\int ds_1 = \frac{\lambda L}{\epsilon_0}$ $E \times 2\pi r L = \frac{\lambda L}{\epsilon_0}$ $E = \frac{\lambda}{2\pi\epsilon_0 r}$ $\vec{E} = \frac{\lambda}{2\pi\epsilon_0 r}$	1
35. (b)	$ \begin{array}{c} \widehat{n_L} \\ \widehat{n_R} \\ E_x = \propto x = 400x \\ E_y = E_z = 0 \end{array} $ Hence flux will exist only on left and right faces of cube as $E_x \neq 0$ $ \begin{array}{c} \widehat{E_L} \cdot a^2(n_2) + \widehat{E_R} \cdot a^2\widehat{n_R} = \frac{1}{e_0} \{qin\} = \phi \\ -E_L \cdot a^2(\widehat{n_2}) + a^2E_R = \phi_{Net} \\ \phi_{Net} = -(400a)a^2 + a^2(400 \times 2a) \\ = -400a^3 + 800a^3 \\ = 400 \times (.1)^3 \\ \phi_{Net} = 0.4 \text{ Nm}^2c^{-1} \end{array} $	1

		1
(a)	Definition of electrostatic potential – SI unit J/c of Volt. Deduction of expression of electrostatic potential energy of given system of charges – $U = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right]$	1 2
(b)		1
	(1)	
		1
36.	For forward motion from $x = 0$ to $x = 2b$. The flux ϕ_B linked with circuit SPQR is	
	S ∴ ∴ K.	

$\phi_B = Blx$	0≤x <b< th=""></b<>
Blb	b≤x<2b

The induced emf is,

$$e = \frac{-d\phi E}{dt}$$

$$e = -Blv$$

$$= 0$$

$$0 \le x < b$$

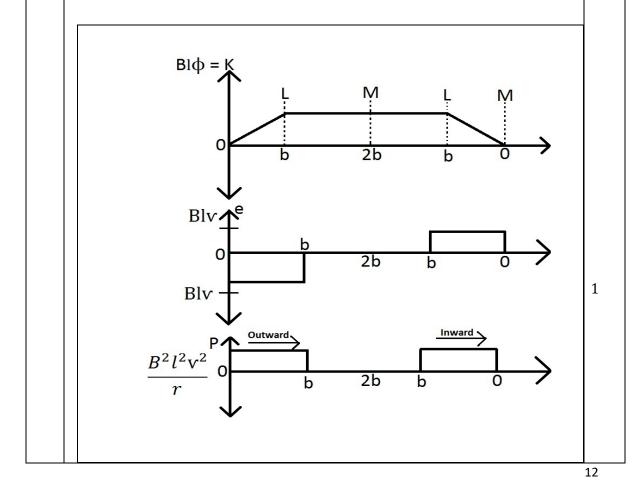
$$= 0$$

$$b \le x < 2b$$

When induced emf is non-zero, the current \dot{I} in the magnitude;

$$I = \frac{s}{r} = \frac{Blv}{r}$$

The force required to keep arm PQ in constant motion is F = IIB. Its direction is to the left. In magnitude

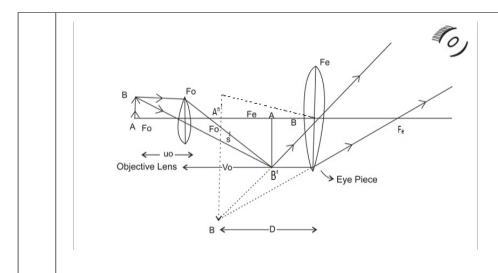

$$F = I/B = \frac{\mathbb{Z}^2 \mathbb{Z}^2 \mathbb{V}}{\mathbb{Z}^2} \quad ; \qquad 0 \le x < b$$

$$= 0 \quad ; \qquad b \le x < 2b$$

The Joule heating loss is

$$\begin{split} P_J &= I^2 \, \gamma \\ &= \frac{B^2 I^2 v^2}{\gamma} \\ &= 0 \\ \end{split} \qquad 0 \leq x < b \\ b \leq x < 2b \end{split}$$

One obtains similar expressions for the inward motion from x=2b to x=0



1

1

1

	<u>OR</u>	
	Working principle of cyclotron Diagram Working of cyclotron with explanation Any two appliations	1 1 2 1
37.		
	_M	
	B B' A' F C	1
	LE N	
	Deduction of mirror formula $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	2
	For a convex mirror f is always +ve.	
	∴ f > c	1
	Object is always placed in front of mirror hence $u < 0$ (for real object) $\frac{1}{u} + \frac{1}{u} = \frac{1}{u}$	
	$\Rightarrow \frac{1}{v} = \frac{1}{f} \cdot \frac{1}{u}$	
	As u < 0 u -ve hence	
	$\frac{1}{v} > 0$	1
	\Rightarrow v> 0 i.e. +ve for all values of u. Image will be formed behind the mirror and it will be virtual for all values of u.	
	OR	
37. (a)	Ray Diagram : (with proper labeling)	1

Magnifying power m =
$$\frac{V_0}{u_0} \left(1 + \frac{D}{fe} \right)$$

m = $\frac{L}{f_0} \left(1 + \frac{D}{fe} \right)$

1

37.
$$: m = m_0 m_e = -30$$
 (virtual, inverted)

$$:f_0 = 1.25$$
cm

$$f_e = 5.0 cm$$

Let us setup a compound microscope such that the final image be formed at D, then

$$m_e = 1 + \frac{v}{fe} = 1 + \frac{25}{5} = 6$$

1

and position of object for this image formation can be calculated –

$$\frac{1}{\text{Ve}} - \frac{1}{\text{ue}} = \frac{1}{\text{fe}}$$

$$\frac{1}{-25} \cdot \frac{1}{ue} = \frac{1}{5}$$

$$- \frac{1}{ue} = \frac{1}{5} + \frac{1}{25} = \frac{6}{25}$$

$$ue = \frac{-25}{6} = -4.17$$
cm.

$$: m = m_o \times m_e$$

$$\therefore m_o = \frac{+Vo}{uo} = \frac{-30}{6} = -5$$

$$\therefore$$
 V = -5 u_o

$$\frac{1}{V_0} - \frac{1}{v_0} = \frac{1}{f_0}$$

$$\frac{1}{-5uo} - \frac{1}{uo} = \frac{1}{1.25}$$

$$\frac{-\kappa}{5uo} = \frac{1}{125}$$

$$uo = -1.5 \text{cm} \implies v_0 = 7.5 \text{cm}$$

$$Tube \ length = V_o + |u_e| = 7.5 \text{cm} + 4.17 \text{cm}$$

$$L = 11.67 \text{cm}$$
Object should be placed at 1.5 cm distance from the objective lens.