Series: GBM/C

कोड नं.
55/1

रोल नं.
Roll No.

Code No.
परीक्षार्थी कोड को उत्तर-पुस्तिका के मुखपृष्ठ पर अवश्य लिखें।
Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 16 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 16 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains $\mathbf{2 6}$ questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at $10.15 \mathrm{a} . \mathrm{m}$. From $10.15 \mathrm{a} . \mathrm{m}$. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक)

PHYSICS (Theory)

निर्धारित समय : 3 घंटे
अधिकतम अंक :70
Time allowed : 3 hours
सामान्य निर्देश :
(i) सभी प्रश्न अनिवार्य हैं । इस प्रश्न-पत्र में कुल 26 प्रश्न हैं।
(ii) इस प्रश्न-पत्र के 5 भाग हैं : खण्ड-अ, खण्ड-ब, खण्ड-स, खण्ड-द और खण्ड-य।
(iii) खण्ड-अ में 5 प्रश्न हैं, प्रत्येक का 1 अंक है । खण्ड-ब में 5 प्रश्न हैं, प्रत्येक के 2 अंक हैं। खण्ड-स में 12 प्रश्न हैं, प्रत्येक के 3 अंक हैं। खण्ड-द में 4 अंक का एक मूल्याधारित प्रश्न है और खण्ड-य में 3 प्रश्न हैं, प्रत्येक के 5 अंक हैं।
(iv) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है । तथापि, दो अंकों वाले एक प्रश्न में, तीन अंकों वाले एक प्रश्न में और पाँच अंकों वाले तीनों प्रश्नों में आन्तरिक चयन प्रदान किया गया है । ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है।
(v) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
$\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
इलेक्ट्रॉन का द्रव्यमान $=9.1 \times 10^{-31} \mathrm{~kg}$
न्यूट्रॉन का द्रव्यमान $=1.675 \times 10^{-27} \mathrm{~kg}$
प्रोटॉन का द्रव्यमान $=1.673 \times 10^{-27} \mathrm{~kg}$
आवोगाद्रो संख्या $=6.023 \times 10^{23}$ प्रति ग्राम मोल
बोल्ट्रज़मान नियतांक $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

General Instructions :

(i) All questions are compulsory. There are 26 questions in all.
(ii) This question paper has five sections: Section A, Section B, Section C, Section D and Section \boldsymbol{E}.
(iii) Section \boldsymbol{A} contains five questions of one mark each, Section \boldsymbol{B} contains five questions of two marks each, Section C contains twelve questions of three marks each, Section D contains one value based question of four marks and Section \boldsymbol{E} contains three questions of five marks each.
(iv) There is no overall choice. However, an internal choice has been provided in one question of two marks, one question of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
(v) You may use the following values of physical constants wherever necessary:
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
$\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton $=1.673 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $=6.023 \times 10^{23}$ per gram mole
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

SECTION - A

1. कोई बिन्दु आवेश $+Q$ किसी चालक पृष्ठ के समीप स्थित है । पृष्ठ और आवेश के बीच विद्युत क्षेत्र रेखाएँ खींचिए।

A point charge +Q is placed in the vicinity of a conducting surface. Draw the electric field lines between the surface and the charge.
2. माडुलन सूचकांक की परिभाषा लिखिए। सामान्यतः इसे एक से कम क्यों रखा जाता है ? Define modulation index. Why is it generally kept less than one?
3. दिए गए आरेख में, चुम्बकों की कुण्डली की ओर तीव्रता से गति करते समय संधारित्र की पट्टिकाओं A और B की ध्रुवता अंकित कीजिए।

In the figure given, mark the polarity of plates A and B of a capacitor when the magnets are quickly moved towards the coil.

4. दो दूरबीनों के अभिदृश्यक लेंसों के द्वारक तो समान हैं, परन्तु उनकी फोकस दूरियों का अनुपात $1: 2$ है। इन दोनों दूरबीनों की विभेदन क्षमताओं की तुलना कीजिए।
The objective lenses of two telescopes have the same apertures but their focal lengths are in the ratio $1: 2$. Compare the resolving powers of the two telescopes.
5. एक चालक की चालकता की परिभाषा दीजिए और इसका SI मात्रक लिखिए।

Define the conductivity of a conductor. Write its SI unit.

खण्ड - ब

SECTION - B

6. (i) किसी माध्यम के अपवर्तनांक की परिभाषा लिखिए।
(ii) नीचे दिए गए किरण आरेख में अज्ञात अपवर्तनांक के द्रव में प्रकाश की चाल परिकलित कीजिए।

(i) Define refractive index of a medium.
(ii) In the following ray diagram, calculate the speed of light in the liquid of unknown refractive index.

7. जब उपेक्षणीय कार्यफलन के किसी फोटोसेल के कैथोड पर, तरंगदैर्ध्य λ के फोटॉन आपतित कराए जाते हैं, तो वह इलेक्ट्रॉन उत्सर्जित करता है। आपतित प्रकाश की तरंगदैर्ध्य के पदों में उत्सर्जित इलेक्ट्रॉनों की दे-ब्राग्ली तरंगदैर्ध्य के लिए व्यंजक व्युत्पन्न कीजिए।

अथवा
दे-ब्राग्ली परिकल्पना का उपयोग करके हाइड्रोजन परमाणु में परिक्रमण करते किसी इलेक्ट्रॉन के कोणीय संवेग के लिए बोर का क्वान्टमीकरण प्रतिबंध व्युत्पन्न कीजिए।
Electrons are emitted from the cathode of a photocell of negligible work function, when photons of wavelength λ are incident on it. Derive the expression for the de Broglie wavelength of the electrons emitted in terms of the wavelength of the incident light.

OR

Derive the Bohr's quantisation condition for angular momentum of the orbitting of electron in hydrogen atom, using de Broglie's hypothesis.
8. (a) नाभिकीय बलों के दो विशिष्ट गुण लिखिए।
(b) किसी न्यूक्लिऑनों के युगल की स्थितिज ऊर्जा का उनके बीच पृथकन के फलन के रूप में ग्राफ खींचिए।
(a) Write two characteristic features of nuclear force.
(b) Draw a plot of potential energy of a pair of nucleons as a function of their separation.
9. संचरण की व्योम तरंग और आकाश तरंग विधाओं में विभेदन करने वाले दो बिन्दुओं का उल्लेख कीजिए।

State the two points to distinguish between sky wave and space wave modes of propagation.
10. नीचे आरेख में किसी दिए गए सेल के लिए टर्मिनल वोल्टता ' V ' और धारा ' i ' के बीच ग्राफ दर्शाया गया है। इस ग्राफ से (a) सेल का $e m f$, और (b) सेल का आन्तरिक प्रतिरोध परिकलित कीजिए।

The figure shows a plot of terminal voltage ' V ' versus the current ' i ' of a given cell. Calculate from the graph (a) emf of the cell and (b) internal resistance of the cell.

[P.T.O.

खण्ड - स
SECTION - C
11. धारिता C के किसी समान्तर पट्टिका संधारित्र को किसी बैटरी द्वारा विभव V तक आवेशित किया गया है। बैटरी को बिना हटाए पट्टिकाओं के बीच की दूरी तीन गुनी कर दी जाती है तथा संधारित्र पट्टिकाओं के बीच $\mathrm{k}=10$ का कोई परावैद्युत माध्यम रख दिया जाता है । कारण देते हुए व्याख्या कीजिए कि इसका निम्नलिखित पर क्या प्रभाव पड़ेगा -
(i) संधारित्र की धारिता,
(ii) संधारित्र पर आवेश, और
(iii) संधारित्र का ऊर्जा घनत्व

A parallel plate capacitor of capacitance C is charged to a potential V by a battery. Without disconnecting the battery, the distance between the plates is tripled and a dielectric medium of $\mathrm{k}=10$ is introduced between the plates of the capacitor. Explain giving reasons, how will the following be affected :
(i) capacitance of the capacitor
(ii) charge on the capacitor, and
(iii) energy density of the capacitor.
12. (a) नाभिकों जिनके लिए $20 \leq \mathrm{A} \leq 170$ है, बंधन ऊर्जा प्रति न्यूक्लिऑन $(\mathrm{BE} / \mathrm{A})$ और द्रव्यमान संख्या A के बीच ग्राफ खींचिए।
(b) द्रव्यमान संख्या 240 का कोई नाभिक जिसकी बंधन ऊर्जा प्रति न्यूक्लिऑन 7.6 MeV है, दो खण्डों Y और Z , जिनकी द्रव्यमान संख्या क्रमशः 110 और 130 है, में विखण्डित होता है। यदि Y और Z में, प्रत्येक की बंधन ऊर्जा प्रति न्यूक्लिऑन 8.5 MeV के बराबर है, तो इस नाभिकीय अभिक्रिया में मुक्त ऊर्जा परिकलित कीजिए।
(a) Draw a graph showing the variation of binding energy per nucleon (BE / A) vs mass number A for the nuclei in $20 \leq \mathrm{A} \leq 170$.
(b) A nucleus of mass number 240 and having binding energy/nucleon 7.6 MeV splits into two fragments Y, Z of mass numbers 110 and 130 respectively. If the binding energy/nucleon of Y, Z is equal to 8.5 MeV each, calculate the energy released in the nuclear reaction.
13. (a) यंग के किसी द्विझिरी प्रयोग में दो झिरियों को, समान तरंगदैर्ध्य के प्रकाश के दो भिन्न लैम्पों द्वारा, प्रदीप्त किया गया है । कारण सहित व्याख्या कीजिए कि पर्दे पर व्यतिकरण पैटर्न का प्रेक्षण किया जाएगा अथवा नहीं।
(b) पर्दे के दो बिन्दुओं पर दो एकवर्णी स्रोतों से आने वाली प्रकाश तरंगों के बीच पथान्तर $0, \lambda / 2$ हैं। इन बिन्दुओं पर तीव्रताओं का अनुपात ज्ञात कीजिए।
(a) In Young's double slit experiment, the two slits are illuminated by two different lamps having same wavelength of light. Explain with reason, whether interference pattern will be observed on the screen or not.
(b) Light waves from two coherent sources arrive at two points on a screen with path differences of 0 and $\lambda / 2$. Find the ratio of intensities at the points.
14. बोर के अभिगृहीतों का उपयोग करके हाइड्रोजन परमाणु की n वीं कक्षा में परिक्रमण करने वाले इलेक्ट्रॉन की कुल ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए । H_{α} लाइन की तरंगदैर्ध्य ज्ञात कीजिए, दिया है रिडबर्ग नियतांक, $\mathrm{R}=1.1 \times 10^{7} \mathrm{~m}^{-1}$.

Using Bohr's postulates, derive the expression for the total energy of the electron revolving in $n^{\text {th }}$ orbit of hydrogen atom. Find the wavelength of H_{α} line, given the value of Rydberg constant, $\mathrm{R}=1.1 \times 10^{7} \mathrm{~m}^{-1}$.
15. 10 nm से $10^{-3} \mathrm{~nm}$ परिसर की तरंगदैर्ध्य की वैद्युत चुम्बकीय तरंगों का नाम लिखिए। ये तरंगें किस प्रकार उत्पन्न की जाती हैं ? इनके दो उपयोग लिखिए।

Name the e.m. waves in the wavelength range 10 nm to $10^{-3} \mathrm{~nm}$. How are these waves generated? Write their two uses.
16. (a) किसी धारावाही वृत्ताकार कुण्डली की चुम्बकीय क्षेत्र रेखाओं का पैटर्न खींचिए।
(b) त्रिज्या R के दो सर्वसम धारावाही पाश X और Y , जिनसे समान धारा प्रवाहित हो रही है, आरेख में दर्शाए अनुसार लम्बवत तलों में इस प्रकार रखे हैं कि उनका उभयनिष्ठ केन्द्र आरेख में दर्शाए अनुसार P पर है । इन दोनों पाशों के कारण बिन्दु P पर नेट चुम्बकीय क्षेत्र का परिमाण और दिशा ज्ञात कीजिए।

(a) Draw the pattern of magnetic field lines for a circular coil carrying current.
(b) Two identical circular loops X and Y of radius R and carrying the same current are kept in perpendicular planes such that they have a common centre at P as shown in the figure. Find the magnitude and direction of the net magnetic field at the point P due to the loops.

17. कारण सहित उल्लेख कीजिए कि फोटोडायोड का प्रचालन सदैव पश्चदिशिक बायस में ही क्यों किया जाता है। किसी फोटोडायोड के प्रचालन का कार्यकारी सिद्धान्त लिखिए। किसी फोटोडायोड के संविरचन के लिए उपयोग किए जाने वाले अर्धचालक पदार्थ का ऊर्जा-अन्तराल 1.2 eV है। परिकलनों का उपयोग करके यह दर्शाइए कि यह उस पर आपतित 400 nm तरंगदैर्ध्य के प्रकाश का संसूचन कर सकता है अथवा नहीं।

State the reason, why the photodiode is always operated under reverse bias. Write the working principle of operation of a photodiode. The semiconducting material used to fabricate a photodiode, has an energy gap of 1.2 eV . Using calculations, show whether it can detect light of wavelength of 400 nm incident on it.
18. किसी उभयनिष्ठ उत्सर्जक ट्रांज़िस्टर प्रवर्धक का परिपथ आरेख खींचिए । इसकी वोल्टता लब्धि के लिए व्यंजक लिखिए । व्याख्या कीजिए कि किस प्रकार निवेश और निर्गत सिग्नलों की कलाओं में 180° का अन्तर होता है।

अथवा

किसी पूर्ण तरंग दिष्टकारी का परिपथ आरेख खींचिए । इसके कार्यकारी सिद्धान्त की व्याख्या कीजिए । इसके निवेश और निर्गत तरंगरूपों को आरेखित कीजिए ।

Draw the circuit diagram of a common emitter transistor amplifier. Write the expression for its voltage gain. Explain, how the input and output signals differ in phase by 180°.

OR

Draw the circuit diagram of a full wave rectifier. Explain its working principle. Draw the input and output waveforms.
19. संक्षेप में उन तीन कारकों की व्याख्या कीजिए जो किसी निम्न आवृत्ति के सिग्नल को उच्च आवृत्तियों में माडुलित करने की आवश्यकता की पुष्टि करते हैं।

Briefly explain the three factors which justify the need of modulating low frequency signal into high frequencies.
[P.T.O.
20. किसी गैल्वेनोमीटर की धारा सुग्राहिता की परिभाषा लिखिए । नीचे आरेख में दर्शाए गए परिपथों में प्रत्येक प्रकरण में गैल्वेनोमीटर कोई विक्षेप नहीं दर्शाता। R_{1} और R_{2} का अनुपात ज्ञात कीजिए।

Define the term current sensitivity of a galvanometer. In the circuits shown in the figures, the galvanometer shows no deflection in each case. Find the ratio of R_{1} and R_{2}.

21. 12 mH और 30 mH स्वप्रेरकत्व के दो प्रेरकों में प्रवाहित धारा में समय के साथ समान दर से वृद्धि हो रही है। निम्नलिखित विचरणों को दर्शाने के लिए ग्राफ खींचिए :
(a) प्रेरित emf और प्रत्येक प्रेरक में धारा में परिवर्तन की दर के बीच ।
(b) प्रत्येक प्रेरक में संचित ऊर्जा और उससे प्रवाहित धारा के बीच ।

यदि इन दोनों कुण्डलियों में शक्ति क्षय समान है, तो इन कुण्डलियों में संचित ऊर्जाओं की तुलना कीजिए।
The current through two inductors of self-inductance 12 mH and 30 mH is increasing with time at the same rate. Draw graphs showing the variation of the
(a) emf induced with the rate of change of current in each inductor
(b) energy stored in each inductor with the current flowing through it.

Compare the energy stored in the coils, if the power dissipated in the coils is the same.
22. (a) विवर्तन बैण्ड की कोटि (n) में विचरण के साथ विवर्तन पैटर्न की तीव्रता में होने वाले परिवर्तन की व्याख्या कीजिए।
(b) सोडियम के प्रकाश की दो तरंगदैर्द्यों 590 nm और 596 nm का उपयोग बारी-बारी से 4 mm साइज़ की किसी एकल झिरी से विवर्तन का अध्ययन करने के लिए किया गया है। झिरी से पर्दे की दूरी 2 m है । दोनों प्रकरणों में प्राप्त विवर्तन पैटर्नों के प्रथम उच्चिष्ठों की स्थितियों के बीच पृथकन परिकलित कीजिए।
(a) Explain how the intensity of diffraction pattern changes as the order (n) of the diffraction band varies.
(b) Two wavelengths of sodium light 590 nm and 596 nm are used in turn to study the diffraction at a single slit of size 4 mm . The distance between the slit and screen is 2 m . Calculate the separation between the positions of the first maximum of the diffraction pattern obtained in the two cases.

खण्ड - द

SECTION - D

23. उत्तरी रेलवे के मुख्य यांत्रिक अभियन्ता श्री कामथ द्रुतगामी ट्रेनों पर आयोजित सेमीनार में भाग लेने टोक्यो गये । उनके मित्र श्री हियोर्की ने समझाया कि किस प्रकार जापान के लोग ऊर्जा के संरक्षण और जीवाश्मी ईंधन की बचत के लिए मैग्लेव ट्रेनों के उपयोग पर अपना ध्यान केन्द्रित कर रहे हैं। श्री कामथ ने मैग्लेव ट्रेन द्वारा टोक्यो से ओसाका की यात्रा की और यह पाया कि आवाज़ कम है, यात्रा निर्बाध है तथा उन्होंने जनपरिवहन प्रणालियों के लिए जापानी प्रौद्योगिकी को भी समझा । मैग्लेव ट्रेन माइस्नर प्रभाव के सिद्धान्त पर कार्य करती है। $2+2$
(a) श्री कामथ ने श्री हियोर्की में जिन दो मूल्यों को पाया उनका उल्लेख कीजिए।
(b) आप श्री कॉमथ के किन दो मूल्यों का आदर करते हैं ?
(c) माइस्नर प्रभाव क्या है ? आदर्श प्रतिचुम्बकीय पदार्थ के लिए चुम्बकशीलता का मान लिखिए।

Mr Kamath, the chief mechanical engineer, in Northern railways went to Tokyo to attend a seminar on fast moving trains. His friend Mr Hiorki explained how Japanese people are concentrating on energy conservation and saving fossil fuels using maglev trains. Mr Kamath travelled from Tokyo to Osaka in maglev train and found that the sound is less, travel is smooth and understood the Japanese technology in mass transporting systems. Maglev trains work on the principle of Meissner's effect.
(a) Mention two values which Mr Kamath found in Mr Hiorki.
(b) Which values in Mr Kamath do you appreciate?
(c) What is Meissner's effect? Write the value of magnetic permeability for perfect diamagnetism.

खण्ड-य

SECTION - E

24. (a) गाउस का नियम लिखिए । इस नियम का उपयोग करके किसी अनन्त लम्बाई के सीधे आवेशित तार, जिसका रैखिक आवेश घनत्व λ है, के कारण विद्युत क्षेत्र के लिए व्यंजक प्राप्त कीजिए। $3+2$
(b) लम्बाई L के किसी तार AB का रैखिक आवेश घनत्व $\lambda=\mathrm{kx}$ है, यहाँ x को तार के सिरे A से मापा गया है । यह तार किसी गाउसीय गोलीय पृष्ठ से परिबद्ध है । इस पृष्ठ से गुजरने वाले विद्युत फ्लक्स के लिए व्यंजक ज्ञात कीजिए।

अथवा

(a) किसी वैद्युत द्विध्रुव के अक्ष से कोण α बनाते हुए द्विध्रुव के केन्द्र से दूरी r के किसी बिन्दु P पर विद्युत विभव के लिए व्यंजक व्युत्पन्न कीजिए।
(b) $4 \mu \mathrm{C}$ और $+1 \mu \mathrm{C}$ के दो बिन्दु आवेश वायु में एक दूसरे से 2 m दूरी पर स्थित हैं । इन आवेशों को मिलाने वाली रेखा पर वह बिन्दु ज्ञात कीजिए जहाँ इस निकाय का नेट विद्युत क्षेत्र शून्य है।
(a) State Gauss' law. Using this law, obtain the expression for the electric field due to an infinitely long straight conductor of linear charge density λ.
(b) A wire AB of length L has linear charge density $\lambda=\mathrm{k} x$, where x is measured from the end A of the wire. This wire is enclosed by a Gaussian hollow surface. Find the expression for the electric flux through this surface.

OR

(a) Derive the expression for the electric potential at any point P , at distance r from the centre of an electric dipole, making angle α, with its axis.
(b) Two point charges $4 \mu \mathrm{C}$ and $+1 \mu \mathrm{C}$ are separated by a distance of 2 m in air. Find the point on the line-joining charges at which the net electric field of the system is zero.
25. (a) सिद्ध कीजिए कि किसी ac परिपथ में जुड़ा कोई आदर्श संधारित्र शक्ति -क्षय नहीं करता।
(b) 200 mH का कोई प्रेरक, $400 \mu \mathrm{f}$ का कोई संधारित्र और 10Ω का कोई प्रतिरोधक परिवर्ती आवृत्ति के किसी 50 V ac स्रोत से श्रेणीक्रम में संयोजित हैं । निम्नलिखित का परिकलन कीजिए :
(i) वह कोणीय आवृत्ति जिस पर परिपथ में अधिकतम शक्ति-क्षय होता है तथा इसके तदनुरूप प्रभावी धारा का मान, और
(ii) परिपथ में Q -कारक का मान

अथवा

(a) लम्बाई l की कोई धात्विक छड़, अपनी लम्बाई के लम्बवत वेग v से, उस चुम्बकीय क्षेत्र $\overrightarrow{\mathrm{B}}$ में गति करती है, जो छड़ की गति के तल के लम्बवत कार्यरत है । प्रेरित emf के लिए व्यंजक व्युत्पन्न कीजिए।
(b) कोई पहिया जिसमें धातु के 15 अरे हैं, और प्रत्येक अरे की लम्बाई 60 cm है, पृथ्वी के चुम्बकीय क्षेत्र के क्षैतिज घटक के अभिलम्बवत तल में 360 चक्कर प्रति मिनट की दर से घूर्णन कर रहा है। उस स्थान पर नति कोण 60° है । यदि पहिए की धुरी और उसकी नेमि के बीच प्रेरित emf 400 mV है, तो उस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र का क्षैतिज घटक परिकलित कीजिए। यदि अरों की संख्या में वृद्धि कर दी जाए, तो प्रेरित emf किस प्रकार परिवर्तित होगा ?
(a) Prove that an ideal capacitor in an ac circuit does not dissipate power.
(b) An inductor of 200 mH , capacitor of $400 \mu \mathrm{f}$ and a resistor of 10Ω are connected in series to ac source of 50 V of variable frequency. Calculate the
(i) angular frequency at which maximum power dissipation occurs in the circuit and the corresponding value of the effective current, and
(ii) value of Q -factor in the circuit.

OR

(a) A metallic rod of length l is moved perpendicular to its length with velocity v in a magnetic field \vec{B} acting perpendicular to the plane in which rod moves. Derive the expression for the induced emf.
(b) A wheel with 15 metallic spokes each 60 cm long, is rotated at $360 \mathrm{rev} / \mathrm{min}$ in a plane normal to the horizontal component of earth's magnetic field. The angle of dip at that place is 60°. If the emf induced between rim of the wheel and the axle is 400 mV , calculate the horizontal component of earth's magnetic field at the place.

How will the induced emf change, if the number of spokes is increased?
26. (a) कारण सहित व्याख्या कीजिए कि किसी अपसारी लेंस की क्षमता किस प्रकार परिवर्तित होती है, जब (i) उसे किसी ऐसे माध्यम में रखा जाता है जिसका अपवर्तनांक लेंस के अपवर्तनांक से अधिक है, (ii) आपतित लाल प्रकाश को बैंगनी प्रकाश से प्रतिस्थापित किया जाता है।
(b) आरेख में दर्शाए अनुसार, तीन लेंस $\mathrm{L}_{1}, \mathrm{~L}_{2}$ और L_{3} जिनमें प्रत्येक की फोकस दूरी 30 cm है, समक्ष रखे गए हैं । किसी वस्तु को लेंस L_{1} के प्रकाशिक केन्द्र से 60 cm दूरी पर रखा गया है। अंतिम वास्तविक प्रतिबिम्ब L_{3} के फोकस पर बनता है । (i) $\left(\mathrm{L}_{1}\right.$ और $\left.\mathrm{L}_{2}\right)$ तथा (ii) $\left(\mathrm{L}_{2}\right.$ और $\left.\mathrm{L}_{3}\right)$ के बीच पृथकन परिकलित कीजिए।

अथवा
(a) उपयुक्त किरण आरेख खींचकर किसी काँच के त्रिभुजाकार प्रिज़्म के अपवर्तनांक के लिए न्यूनतम विचलन कोण (D) और प्रिज़्म कोण (A) के पदों में व्यंजक व्युत्पन्न कीजिए। आपतन कोण के साथ विचलन कोण में विचरण को दर्शाने के लिए ग्राफ खींचिए।
(b) उस आपतन कोण का मान परिकलित कीजिए जिस पर कोई प्रकाश किरण किसी समबाहु काँच प्रिज्म के किसी एक फलक पर आपतन करके, उस निर्गत किरण को उत्पन्न करती है, जो प्रिज्म के संलग्न फलक के अनुदिश ठीक-ठीक स्पर्श करती हुई गमन करती है। प्रिज़्म का अपवर्तनांक $\sqrt{2}$ है।
(a) Explain with reason, how the power of a diverging lens changes when (i) it is kept in a medium of refractive index greater than that of the lens. (ii) incident red light is replaced by violet light.
(b) Three lenses L_{1}, L_{2}, L_{3} each of focal length 30 cm are placed co-axially as shown in the figure. An object is held at 60 cm from the optic centre of lens L_{1}. The final real image is formed at the focus of L_{3}. Calculate the separation between (i) (L_{1} and L_{2}) and (ii) $\left(\mathrm{L}_{2}\right.$ and $\left.\mathrm{L}_{3}\right)$.

OR
(a) Deduce the expression, by drawing a suitable ray diagram, for the refractive index of a triangular glass prism in terms of the angle of minimum deviation (D) and the angle of prism (A).

Draw a plot showing the variation of the angle of deviation with the angle of incidence.
(b) Calculate the value of the angle of incidence when a ray of light incident on one face of an equilateral glass prism produces the emergent ray, which just grazes along the adjacent face. Refractive index of the prism is $\sqrt{2}$.

