SAMPLE QUESTION PAPER (TERM I) 2021-22

CLASS XII
 BIOLOGY

Time: 90 Minutes

General Instructions:

1. The Question Paper contains three sections.
2. Section A has 24 questions. Attempt any 20 questions.
3. Section B has 24 questions. Attempt any 20 questions.
4. Section C has 12 questions. Attempt any 10 questions.
5. All questions carry equal marks.
6. There is no negative marking.

3	The coconut water from tender coconut is A. cellular endosperm. B. free nuclear endosperm. C. both cellular and nuclear endosperm. D. free nuclear embryo.
4	Pollen grains are well preserved as fossils because of presence of A. sporopollenin B. cellulose C. lignocellulose D. pectocellulose
5	Which of the following statements are true related to Seed X and Y?

7 Figure A shows the front view of the human female reproductive system and Figure Bshows the development of a fertilized human egg cell

Figure A

Figure B.

Identify the correct stage of development of human embryo (Figure B) that takes place at the site X, Y and Z respectively in the human female reproductive system (Figure A).

Choose the correct option from the table below:

	X	Y	Z
A	Morula	Fertilized egg	Blastocyst
B	Unfertilized egg	Fertilized egg	Morula
C	Blastocyst	Fertilized egg	Unfertilized egg
D	Fertilized egg	Morula	Blastocyst

12	How many types of gametes would be produced if the genotype of a parent is AaBB ? A. 1 B. 2 C. 3 D. 4
13	Which of the following statements indicates parallelism in genes and chromosomes? (i) They occur in pairs (ii) They segregate during gamete formation (iii) They show linkage (iv) Independent pairs segregate independently A. (i) and (iii) B. (ii) and (iii) C. (i), (ii) and (iii) D. (i), (ii) and (iv)
14	Which of the following amino acid substitution is responsible for causing sickle cell anemia? A. Valine is substituted by Glutamic acid in the α globin chain at the sixth position B. Valine is substituted by Glutamic acid in the β globin chain at seventh position C. Glutamic acid is substituted by Valine in the α globin chain at the sixth position D. Glutamic acid is substituted by Valine in the β globin chain at the sixth position
15	In human beings, where genotype $A A B B C C$ represents dark skin colour, aabbcc represents light skin colour and AaBbCc represents intermediate skin colour; the pattern of genetic inheritance can be termed as: A. Pleiotropy and codominance B. Pleiotropy and incomplete dominance C. Polygenic and qualitative inheritance D. Polygenic and quantitative inheritance
16	Which of the following combination of chromosome numbers represents the correct sex determination pattern in honey bees? A. Male 32, Female 16 B. Male 16, Female 32 C. Male 31, Female 32 D. Female 32, Male 31

17	Rajesh and Mahesh have defective haemoglobin due to genetic disorders. Rajesh has too few globin molecules while Mahesh has incorrectly functioning globin molecules. Identify the disorder they are suffering from.			
			Rajesh	Mahesh
			Sickle cell anaemia - an autosome linked recessive trait	Thalassemia - an autosome linked dominant trait
		B	Thalassemia - an autosome linked recessive blood disorder	Sickle cell anaemia - an autosome linked recessive trait
			Sickle cell anaemia - an autosome linked recessive trait	Thalassemia - an autosome linked recessive blood disorder
			Thalassemia - an autosome linked recessive blood disorder	Sickle cell anaemia - an autosome linked dominant trait
18	Which of the follo (i) It should (ii) It should (iii) It should (iv) It should A. (i) and (ii) B. (ii) and (ii) C. (iii) and D. (ii) and (iv)	fol d d ch d n d b (ii) (iii) (iv) (iv)	owing criteria must a molecu ot be able to generate its re nemically and structurally b ol allow slow mutation able to express itself in th	le fulfil to act as a genetic mat lica stable form of Mendelian Character
19	The promoter A. 3^{\prime} (downs B. 5^{\prime} (upstre C. the 5^{\prime} (up D. the 3^{\prime} (do		te and the terminator site eam) end and 5^{\prime} (upstrea m) end and 3^{\prime} (downstrea tream) end of the transcrip nstream) end of the trans	transcription are located at end, respectively of the trans end, respectively of the trans n unit tion unit
20	Which of the A. Exons and B. Exons ap C. Introns a D. Both exo	fo and app app xons	lowing is correct about ma introns do not appear in th ear, but introns do not app ear, but exons do not app and introns appear in the	re RNA in eukaryotes? mature RNA. r in the mature RNA. r in the mature RNA. ature RNA.
21	In E.coli, the la A. lactose is B. represso C. RNA poly D. lactose is		operon gets switched on w present and it binds to the r binds to operator. merase binds to the operato present and it binds to RNA	en pressor. polymerase.

22	Oswald Avery, Colin MacLeod and Maclyn McCarty used enzymes to purify biochemicals such as proteins, DNA and RNA from the heat-killed S cells to see which ones could transform live R cells into S cells in Griffith's experiment. They observed that A. Proteases and RNases affected transformation. B. DNase inhibited transformation. C. Proteases and Lipases affected transformation. D. RNases inhibited transformation.
23	AUG on the mRNA will result in the activation of which of the following RNA having correct combination of amino acids:
	Site A Site B A. UAC Methionine B. Methionine UAC C. Methionine AUG D. AUG Methionine
24	Short stretches of DNA used to identify complementary sequence in a sample arecalled A. probes B. markers C. VNTRs D. primers

SECTION - B

Section - B consists of 24 questions (SI. No. 25 to 48). Attempt any 20 questions from thissection. The first attempted 20 questions would be evaluated.

	Question No. 25 to 28 consist of two statements - Assertion (A) and Reason (R). Answer these questions selecting the appropriate option given below: A. Both A and R are true and R is the correct explanation of A B. Both A and R are true and R is not the correct explanation of A C. A is true but R is false D. A is False but R is true
25	Assertion: Lactational amenorrhea is the natural method of contraception. Reason: It increases the phagocytosis of sperm.
26	Assertion: Saheli, an oral contraceptive for females, contains a steroidal preparation. Reason: It is a "once a week" pill with very few side effects.
27	Assertion: Parturition is induced by a complex neuro endocrine meachanism. Reason: At the end of gestation period, the maternal pituitary releases prolactin which causes uterine contractions.
28	Assertion: When the two genes in a dihybrid cross are situated on the same chromosome, the proportion of parental gene combinations is much higher than nonparental type. Reason: Higher parental gene combinations can be attributed to crossing over betweentwo genes.
	Concentration of which of the following substances will decrease in the maternal blood as it flows from embryo to placenta through the umbilical cord? i. Oxygen ii. Amino Acids iii. Carbon dioxide iv. Urea A. i and ii B. ii and iv C. iii and iv D. i and iv

30	In a fertilized ovule, n, 2n and 3n conditions occur respectively in A. antipodal, zygote and endosperm B. zygote, nucellus and endosperm C. endosperm, nucellus and zygote. D. antipodals, synergids and integusments			
31	A botanist studying Viola (common pansy) noticed that one of the two flower types withered and developed no further due to some unfavorable condition, but the other flower type on the same plant survived and it resulted in an assured seed set. Which of the following will be correct?			
A. The flower type which survived is Cleistogamous and it always exhibits autogamy B. The flower type which survived is Chasmogamous and it always exhibits geitonogamy.				
32 C. The flower type which survived is Cleistogamous and it exhibits both autogamy				
D. The flower type which survived is Chasmogamous and it never exhibits autogamy.		$	$	During parturition, a pregnant woman is having prolonged labour pains and child birth
:---				
has to be fastened. It is advisable to administer a hormone that can				
A. increase the metabolic rate.				
B. release glucose in the blood.				
C. stimulate the ovary.				
D. activate smooth muscles.				

36	A cross is made between tall pea plants having green pods and dwarf pea plants havingyellow pods. In the F2 generation, out of 80 plants how many are likely to be tall plants? A. 15 B. 20 C. 45 D. 60
37	In Antirrhinum, RR is phenotypically red flowers, rr is white and Rr is pink. Select the correct phenotypic ratio in F1 generation when a cross is performed between RR X Rr: A. 1 red: 2 Pink: 1 white B. 2 Pink: 1 white C. 2 Red: 2 Pink D. All Pink
38	What would be the genotype of the parents if the offspring have the phenotypes in 1:1 proportion? A. $A a \times A a$ B. $A A \times A A$ C. $A a \times A A$ D. $A a x$ aa
39	What is the pattern of inheritance in the above pedigree chart? A. Autosomal dominant B. Autosomal recessive C. Sex-linked dominant D. Sex-linked recessive
40	A couple has two daughters. What is the probability that the third child will also be a female? A. 25% B. 50% C. 75% D. 100%

41	Genotypic ratio of $1: 2: 1$ is obtained in a cross between A. $A B \times A B$ B. $\mathrm{Ab} \times \mathrm{Ab}$ C. $A b X a b$ D. $a b \times a b$
42	Total number of nucleotide sequences of DNA that codes for a hormone is 1530. The proportion of different bases in the sequence is found to be Adenine $=34 \%$, Guanine $=19 \%$, Cytosine $=23 \%$, Thymine $=19 \%$. Applying Chargaff's rule, what conclusion can be drawn? A. It is a double stranded circular DNA. B. It is a single stranded DNA. C. It is a double stranded linear DNA. D. It is a single stranded DNA coiled on Histones.
43	A stretch of an euchromatin has 200 nucleosomes. How many bp will there be in the stretch and what would be the length of the typical euchromatin? A. $20,000 \mathrm{bp}$ and $13,000 \times 10^{-9} \mathrm{~m}$ B. $10,000 \mathrm{bp}$ and $10,000 \times 10^{-9} \mathrm{~m}$ C. $40,000 \mathrm{bp}$ and $13,600 \times 10^{-9} \mathrm{~m}$ D. $40,000 \mathrm{bp}$ and $13,900 \times 10^{-9} \mathrm{~m}$
44	Observe structures A and B given below. Which of the following statements are correct? A B A. A is having $2^{\prime}-\mathrm{OH}$ group which makes it less reactive and structurally stable, whereas B is having $2^{\prime}-\mathrm{H}$ group which makes it more reactive and unstable. B. A is having $2^{\prime}-\mathrm{OH}$ group which makes it more reactive and structurally unstable, whereas B is having $2 \cdot-H$ group which makes it less reactive and structurallystable. C. A and B both have -OH groups which make it more reactive and structurally stable. D. A and B both are having -OH groups which make it less reactive and structurally stable

45	If Meselson and Stahl's experiment is continued for sixth generations in bacteria, the ratio of Heavy strands ${ }^{15} \mathrm{~N} /{ }^{15} \mathrm{~N}$:Hybrid ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$: light ${ }^{14} \mathrm{~N} /{ }^{14} \mathrm{~N}$ containing DNA in the sixth generation would be A. 1:1:1 B. $0: 1: 7$ C. $0: 1: 15$ D. $0: 1: 31$
46	Two important RNA processing events lead to specialized end sequences in most human mRNAs: \qquad (i) \qquad at the 5 ' end, and \qquad (ii) \qquad at the 3' end. At the 5'end the most distinctive specialized end nucleotide,_(iii)_is added and a sequence of about 200_ (iv) is added to the 3 ' end. A. (i) Initiator codon (ii) Promotor (iii) Terminator codon (iv) Release factors B. (i). Promotor (ii) Elongation (iii) Regulation (iv) Termination. C. (i) Capping (ii) Polyadenylation (iii) ${ }^{m} G_{\text {ppp }}$ (iv) Poly(A). D. (i) Repressor (ii) Co repressor (iii) Operon (iv) sRelease factors
47	What are minisatellites? A. 10-40 bp sized small sequences within the genes B. Short coding repetitive region on the eukaryotic genome C. Short non-coding repetitive sequence forming large portion of eukaryotic genome D. Regions of coding strands of the DNA
48	There was a mix-up at the hospital after a fire accident in the nursery division. Which of these children belong to the parents? FATHER MOTHER CHILD 1 CHILD 2 CHILD 3 CHILD 4 CHILD 5 CHILD 6 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7 LANE 8 A. All of the children B. Children 2, 3 \& 6 C. Children $1 \& 3$ D. Children 2 \& 4

SECTION - C

Section-C consists of one case followed by 6 questions linked to this case (Q.No. 49 to 54). Besides this, 6 more questions are given. Attempt any 10 questions in this section.
The first attempted 10 questions would be evaluated.

Case	To answer the questions, study the graphs below for Subject 1 and 2 showing differentlevels of certain hormones.
49	The peak observed in Subject 1 and 2 is due to A. estrogen B. progesterone C. luteinizing hormone D. follicle stimulating hormone
50	Subject 2 has higher level of hormone B, which is A. estrogen B. progesterone C. luteinizing hormone D. follicle stimulating hormone
51	If the peak of Hormone A does not appear in the study for Subject 1 , which of thefollowing statement is true? A. Peak of Hormone B will be observed at a higher point in the graph B. Peak of Hormone B will be observed at a point lower than what is given in the graph C. There will be no observed data for Hormone B D. The graph for Hormone B will be a sharp rise followed by a plateau
52	Which structure in the ovary will remain functional in subject 2 ? A. Corpus Luteum B. Tertiary follicle C. Graafian follicle D. Primary follicle

53	For subject 2 it is observed that the peak for hormone B has reached the plateau stage.After approximately how much time will the curve for hormone B descend? A. 28 days B. 42 days C. 180 days D. 280 days
54	Which of the following statements is true about the subjects? A. Subject 1 is pregnant B. Subject 2 is pregnant C. Both subject 1 and 2 are pregnant D. Both subject 1 and 2 are not pregnant
55	The gene that controls the ABO blood group system in human beings has three alleles $-I^{A}, I^{B}$ and i. A child has blood group O. His father has blood group A and mother has blood group B. Genotypes of other off springs can be: i. $\left.\left.\right\|^{B}\right\|^{B}$ ii. $I^{A}{ }_{i}$ iii. $\left.\right\|^{B} i$ iv. $\left.\left.\right\|^{A}\right\|^{B}$ v. ii A. i, ii, iii, v B. ii, iii ,iv, v C. iii, iv, v D. iv, iii, i
56	Placed below is a karyotype of a human being.. On the basis of this karyotype, which of the following conclusions can be drawn: A. Normal human female B. Person is suffering from Colour Blindness C. Affected individual is a female with Down's syndrome D. Affected individual is a female with Turner's syndrome

Downloaded From : http://cbseportal.com/

57 Given below is a dihybrid cross performed on Drosophila.

Which of the following conclusions can be drawn on the basis of this cross?
When yellow bodied (y), white eyed (w) Drosophila females were hybridized with brown bodied ($\mathrm{y}+$), red eyed males ($\mathrm{w}+$) and F1 progenies were intercrossed, F2 generation would have shown the following ratio:
A. 1:2:1 because of linkage of genes
B. 9:3:3:1 because of recombination of genes
C. Deviation from 9:3:3:1 ratio because of segregation of genes
D. Deviation from 9:3:3:1 ratio because of linkage of genes

58	Which cellular process is shown below? A. DNA Replication B. Translation - Initiation C. Translation - Elongation D. Translation - Termination
59	Origin of replication of DNA in E. coli is shown below, Identify the labelled parts (i),(ii), (iii) and (iv) A. (i)- discontinuous synthesis, (ii)- continuous synthesis (iii) 3' end (iv) 5'end B. (i)- continuous synthesis, (ii)- discontinuous synthesis (iii) 5 ' end (iv) 3 'end C. (i)- discontinuous synthesis, (ii)- continuous synthesis (iii) 5 ' end (iv) 3 'end D. (i)- continuous synthesis, (ii)- discontinuous synthesis (iii) 3' end (iv) 5'end
60	Transcription unit is represented in the diagram given below. Identify site (i), factor (ii) and Enzyme (iii) responsible for carrying out the process. A. (i) Promoter Site, (ii) Rho factor (iii) RNA polymerase B. (i) Terminator Site, (ii) Sigma factor (iii) RNA polymerase C. (i) Promoter Site, (ii) Sigma factor (iii) RNA polymerase D. (i) Promoter Site, (ii) Sigma factor (iii) DNA polymerase

Downloaded From : http://cbseportal.com/

Questions in lieu of diagram based questions for VI candidates
 Total Alternative Questions - 20

Section - A

$2 . \quad$ During megasporogenesis, potential megaspore mother cell undergoes following cell divisions to form gametophyte female
A. two meiotic divisions and three mitotic division
B. one meiotic and one mitotic divisions
C. one meiotic and three mitotic divisions
D. one meiotic and two mitotic divisions
$5 . \quad$ Apomictic embryos in Citrus arise from:
A. diploid Egg
B. synergids
C. nucellus
D. antipodal cells
7. Choose the correct option wherein, the correct stages of the development of human embryo takes place.

	Ovary	Fallopian Tube	Uterus
A	Morula	Fertilized egg	Blastocyst
B	Unfertilized egg	Fertilized egg	Morula
C	Unfertilized egg	Fertilized egg	Blastocyst
D	Fertilized egg	Morula	Blastocyst

10. On observing the pollen grain under the microscope, it was found to be long and ribbon shaped. The flower bearing these pollen grain will be pollinated by:
A. Insects
B. Water
C. Air
D. Birds
11. Which one of the following is an incorrect statement for a t RNA molecule?
i. It is an adapter molecule
ii. Previously called as sRNA (soluble RNA)
iii. tRNA has a codon loop that has bases complementary to the code,
iv. it also has an amino acid accepter end to which it binds to amino acids.
v. It is non-specific for each amino acid.
A. i , ii and iii
B. ii, iii and iv
C. i, ii, and iv
D. i, iv and v

Section - B

50.	The Subject 2 has higher level of hormone B, which is A. Estrogen B. Progesterone C. Luteinizing Hormone D. Follicle Stimulating Hormone
51.	If the peak of Hormone A does not appear in the study for Subject 1, which of the following statement is true A. Peak of Hormone B will be observed at a higher point in the graph B. Peak of Hormone B will be observed at a point lower than what is given in the graph C. There will be no observed data for Hormone B D. The Hormone B will show a sharp rise followed by a plateau
52.	Which structure in the ovary will remain functional in subject 2? A. Corpus Luteum B. Tertiary follicle C. Graafian follicle D. Primary follicle
53.	For subject 2 it is observed that the peak for hormone B has reached the plateau stage. After approximately how much time will the curve for hormone B descend? A. 28 days B. 42 days C. 180 days D. 280 days
54.	Which of the following statements is true about the subjects? A. Subject 1 is pregnant B. Subject 2 is pregnant C. Subject 1 and 2 both are pregnant D. Subject 1 and 2 both are not pregnant
56.	Domestic wheat, which has 42 chromosomes, is probably hexaploid ($\mathbf{6 n}$), whereas the haploid number in the ancestral ones was 7 . Find out the right reason as to how are such plants produced? A. Due to failure of segregation of chromatids during cell division cycle B. Due to the gain of extra copy of chromosome C. Due to failure of cytokinesis after telophase stage of cell division D. Due to the loss of extra copy of chromosome

57.	The following are results of crossing a female fly (AaBb) with a male fly (aabb).

AaBb 1005
aabb 1000
Aabb 200
aaBb 210
Which two genotypes are the recombinant offspring?
A. AaBb \& Aabb
B. $\mathrm{AaBb} \& a \mathrm{aBb}$
C. Aabb \& aaBb
D. $\mathrm{AaBb} \& \mathrm{aabb}$
58. On the ribosome, mRNA binds \qquad and two sites in the \qquad for subsequent amino acids to bind to be close enough to each other for the formation of a peptide bond.
A. between the subunits; on the large subunit.
B. to the large subunit; on the small subunit.
C. to the small subunit; on the large subunit.
D. to the small subunit; between the subunits.
59. The main reason for the presence of both a leading and a lagging strand during DNA replication is,
A. DNA polymerase can read and synthesize only in the direction of 3^{\prime}-to-5'
B. DNA polymerase can only synthesize one strand at a time
C. Only one strand is available to be read at any given time
D. There are not enough RNA primers to have both strands be synthesized simultaneously
60. In a cell, DNA transcription is halted when
A. RNA polymerase falls off of the DNA.
B. The end of the DNA is reached.
C. When a rho site is reached.
D. When a stop codon is reached.

