Sample Question Paper <u>CLASS: XII</u> Session: 2021-22 Mathematics (Code-041) Term - 1

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

- **1.** This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION – A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2}\right)\right]$ is equal to:	1
	a) $\frac{1}{2}$ b) $\frac{1}{3}$	
	c) -1 d) 1	
2.	The value of k (k < 0) for which the function f defined as $f(x) = \begin{cases} \frac{1-coskx}{xsinx}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \\ 1 \end{bmatrix}$ is continuous at $x = 0$ is:	1
	a) ± 1 b) -1 c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
3.	If A = $[a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, when i \neq j \\ 0, when i = j \end{cases}$, then A ² is:	1
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$	
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ d) $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$	
4.	Value of k, for which A = $\begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	1
	a) 4 b) -4 c) ±4 d) 0	

5.	Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly			
	increasing:			
	a) (-∞, 2) ∪ (2, ∞)	b) (2, ∞)		
	c) (−∞,2)	d) (−∞, 2]∪ (2, ∞)		
6.	Given that A is a square matrix c	of order 3 and A = - 4, then adj A is	1	
	equal to:			
	a) -4	b) 4		
	c) -16	d) 16		
7.	A relation R in set A = $\{1,2,3\}$ is a	defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}.	1	
	Which of the following ordered p	air in R shall be removed to make it an		
	equivalence relation in A?			
	a) (1, 1)	b) (1, 2)		
	c) (2, 2)	d) (3, 3)		
8.	$If \begin{bmatrix} 2a+b & a-2b\\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3\\ 11 & 24 \end{bmatrix}$, then value of a + b – c + 2d is:	1	
	a) 8	b) 10		
	c) 4	d) -8		
9.	The point at which the normal to	the curve $y = x + \frac{1}{x}$, $x > 0$ is perpendicular to	1	
	the line $3x - 4y - 7 = 0$ is:	X		
		b) $(12, 5/2)$		
	$\begin{array}{c c} a) & (2, 5/2) \\ c) & (-1/2, 5/2) \end{array}$	d) $(1/2, 5/2)$		
10.	sin (tan ⁻¹ x), where $ x < 1$, is equal	al to:	1	
		1		
	a) $\frac{1}{\sqrt{1-x^2}}$	b) $\frac{1}{\sqrt{1-x^2}}$		
		d) ^x		
	C) $\frac{1}{\sqrt{1+x^2}}$	$\frac{1}{\sqrt{1+x^2}}$		
11.	Let the relation R in the set $A = \{$	[x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : a –	1	
	b is a multiple of 4}. Then [1], the equivalence class containing 1, is:			
	b is a multiple of 4}. Then [1], the	e equivalence class containing 1, is:		
	b is a multiple of 4}. Then [1], th	e equivalence class containing 1, is:		
	b is a multiple of 4}. Then [1], th a) {1, 5, 9} c) φ	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A		
	b is a multiple of 4}. Then [1], th a) {1, 5, 9} c) φ	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A		
12.	b is a multiple of 4}. Then [1], th (a) {1, 5, 9} (c) ϕ If $e^{x} + e^{y} = e^{x+y}$, then $\frac{dy}{dy}$ is:	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A	1	
12.	b is a multiple of 4}. Then [1], th a) {1, 5, 9} c) ϕ If $e^x + e^y = e^{x+y}$, then $\frac{dy}{dx}$ is:	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A	1	
12.	b is a multiple of 4}. Then [1], th (a) {1, 5, 9} (c) ϕ If $e^{x} + e^{y} = e^{x+y}$, then $\frac{dy}{dx}$ is: (a) e^{y-x}	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A b) e ^{x+y}	1	
12.	b is a multiple of 4}. Then [1], th (a) {1, 5, 9} (c) ϕ If $e^{x} + e^{y} = e^{x+y}$, then $\frac{dy}{dx}$ is: (a) e^{y-x} (c) $-e^{y-x}$	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A b) e ^{x+y} d) 2 e ^{x-y}	1	
12.	b is a multiple of 4}. Then [1], th (a) {1, 5, 9} (c) ϕ If $e^{x} + e^{y} = e^{x+y}$, then $\frac{dy}{dx}$ is: (a) e^{y-x} (c) $-e^{y-x}$	e equivalence class containing 1, is: b) {0, 1, 2, 5} d) A b) e ^{x+y} d) 2 e ^{x-y}	1	

13.	Given that matrices A and B are of order $3 \times n$ and $m \times 5$ respectively, then the order of matrix C = $5A + 3B$ is:		
	a) 3×5	b) 5×3	
	c) 3x3	d) 5×5	
14.	If y = 5 cos x - 3 sin x, then $\frac{d^2y}{dx^2}$ is	s equal to:	1
	a) - y	b) y	
	c) 25y	d) 9y	
15.	For matrix A = $\begin{bmatrix} 2 & 5\\ -11 & 7 \end{bmatrix}$, $(adjA)'$	is equal to:	1
	a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5\\ 11 & 2 \end{bmatrix}$	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	d) $\begin{bmatrix} 7 & -5\\ 11 & 2 \end{bmatrix}$	
16.	The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} =$ axis are:	1 at which the tangents are parallel to y-	1
	a) (0,±4)	b) (±4,0)	
	c) (±3,0)	d) (0, ±3)	
17.	Given that A = $[a_{ij}]$ is a square n value of $\sum_{i=1}^{3} a_{i2}A_{i2}$, where A_{ij} de	natrix of order 3×3 and $ A = -7$, then the enotes the cofactor of element a_{ij} is:	1
	a) 7	b) -7	
	c) 0	d) 49	
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		1
	a) $\cos e^{x-1}$	b) $e^{-x} \cos e^x$	
	c) $e^x \sin e^x$	d) $-e^x \tan e^x$	
19.	Based on the given shaded region which point(s) is the objective fur	on as the feasible region in the graph, at notice $Z = 3x + 9y$ maximum?	1
	25 D(0,20) 15 C(15,15)		
	$(0,10) \xrightarrow{5} B(5,5) \qquad (60) \xrightarrow{5} (10,0) $	$\begin{array}{c} 0,0) \\ + + \\ x + 3y = 60 \end{array}$	
	a) Point B	b) Point C	
	c) Point D	d) every point on the line segment CD	

20.	The least value of the function $f(x) = 2cosx + x$ in the closed interval $[0, \frac{\pi}{2}]$				
	is:				
	a) 2	b) $\frac{\pi}{2} + \sqrt{3}$			
	$\begin{array}{ c c }\hline c) & \frac{\pi}{2} \end{array}$	d) The least value does not			
		exist.			
	SECT	ION – B			
	In this section, attempt any 16 que	estions out of the Questions 21 - 40.			
	Each Question is c	of 1 mark weightage.			
21.	The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)$	$= x^3$ is:	1		
	a) One-on but not onto	b) Not one-one but onto			
	c) Neither one-one nor onto	d) One-one and onto			
22.	$\frac{d^2y}{dt}$	$n = \frac{\pi}{2}$	1		
	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{1}{dx^2} = a t \theta$	$\theta = -\frac{1}{6}$ IS.			
	$-3\sqrt{3}b$	b $-2\sqrt{3}b$			
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$b) - \frac{a}{a}$			
	$ c) \frac{a}{a} $	(d) $\frac{1}{3\sqrt{3}a^2}$			
23.	In the given g	graph, the feasible region for a LPP is	1		
	shaded.	function $7 = 2x - 3y$ will be minimum			
	(4, 10) The objective function $Z = 2X - 3y$, will be minimum at:				
	(0, 8)				
	(6, 5)				
	a) (4, 10) b) (6, 8)			
- 24	c) (0, 8) d) (6, 5)	4		
24.	The derivative of sin ⁻¹ $(2x\sqrt{1-x^2})$ w.	r.t sin ⁻¹ x, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, is:	1		
		-			
	(a) 2 (b) $\frac{\pi}{2}$	- 2			
25	$ c) \frac{1}{2}$ $ d) -2$		1		
20.		-4]	I		
	If A = $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$ and B = $\begin{bmatrix} -4 & 2 & -4 \end{bmatrix}$, then:				
		L C			
	a) $A^{-1} = B$ b	b) $A^{-1} = 6B$			
	C) B ⁻¹ = B	I) $B^{-1} = \frac{1}{6}A$			

	26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is:	1			
		a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$				
		b) Strictly decreasing in (-2,3)				
		c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$				
		d) Strictly decreasing in $(-\infty, -2) \cup (2, \infty)$				
	27.	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is:	1			
		a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$				
		c) $-\frac{x}{2}$ d) $\pi -\frac{x}{2}$				
	28.	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is:	1			
		a) 4 b) 8				
		c) 64 d) 16				
	29.	The value of <i>b</i> for which the function $f(x) = x + cosx + b$ is strictly decreasing over R is:	1			
		a) <i>b</i> < 1 b) No value of b exists				
		c) $b \le 1$ d) $b \ge 1$				
	30.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then:	1			
		a) $(2,4) \in \mathbb{R}$ b) $(3,8) \in \mathbb{R}$				
		C) $(6,8) \in \mathbb{R}$ d) $(8,7) \in \mathbb{R}$				
	31.	The point(s) at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \end{cases}$	1			
		is continuous, is/are:				
		a) $x \in \mathbb{R}$ b) $x = 0$				
		c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1				
╞	32.	If A = $\begin{bmatrix} 0 & 2 \\ 2 & 4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2k & 24 \end{bmatrix}$, then the values of k, a and b respectively	1			
		are:				

	a) -6, -12, -18	b) -6, -4, -9		
	c) -6, 4, 9	d) -6, 12, 18		
33.	A linear programming problem is as foll	lows:	1	
	$Minimize \ Z = 30x + 50y$			
	subject to the constraints,			
	$3x + 5y \ge 15$			
	$2x + 3y \le 18$			
	$x \ge 0, y \ge 0$			
	In the feasible region, the minimum value	ue of Z occurs at		
	a) a unique point b)	no point		
	c) infinitely many points d)	two points only		
34.	The area of a trapezium is defined by fu	unction f and given by $f(x) = (10 + 1)$	1	
	$x)\sqrt{100-x^2}$, then the area when it is m	naximised is:		
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$		
	c) $75\sqrt{3}cm^2$	d) $5cm^2$		
	If A is some metric such that A ² A d		4	
35.	If A is square matrix such that $A^2 = A$, the	nen (I + A) ³ – 7 A is equal to:	1	
		b) $I + \Delta$		
	c) I - A			
36.	If $\tan^{-1} x = y$, then:	u) 1	1	
	a) −1 < y < 1	b) $\frac{-\pi}{-1} \le y \le \frac{\pi}{-1}$		
		, 2 , 2		
	c) $\frac{-\pi}{-\pi} < y < \frac{\pi}{-\pi}$	d) $v \in \{\frac{-\pi}{2}, \frac{\pi}{2}\}$		
37.	Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1	
	from A to B. Based on the given information	ation, f is best defined as:		
	a) Surjective function	b) Injective function		
	C) Bijective function	d) function	4	
38.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given by	·:	1	
	- 1 2-			
	2) 14 [2 -1]	b) $\begin{bmatrix} 4 & -2 \end{bmatrix}$		
	$a_{1} a_{1} a_{1$	$[12 \ 6]$		
	r2 11	r 2 11		
	c) $2 \begin{vmatrix} 2 & -1 \\ 1 & -3 \end{vmatrix}$	d) $2\begin{vmatrix} -3 & -1 \\ 1 & -2 \end{vmatrix}$		
	-1 5-	- 1 2		
39.	The point(s) on the curve $y = x^3 - 11x$	+ 5 at which the tangent is $y = x - 11$	1	
	is/are:			
	a) (-2,19) b)	(2, -9)		
40	$ (-c) (\pm 2, 19) d $	(-2, 19) and (2, -9)	4	
40.	Given that A = $\begin{vmatrix} \alpha & \beta \\ \gamma & -\alpha \end{vmatrix}$ and A ² = 3I, the	n:	1	
	<u></u> [γ −α]			
1				

			_		
	a) $1 + \alpha^2 + \beta \gamma = 0$ c) $3 - \alpha^2 - \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$ d) $3 + \alpha^2 + \beta \gamma = 0$			
<u>SECTION – C</u> In this section, attempt any 8 questions. Each question is of 1-mark weightage.					
		are based on a case-olduy.			
41.	41. For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on <i>a</i> and <i>b</i> such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:				
	a) $b - 3a = 0$	b) $a = 3b$			
	c) $a + 2b = 0$	d) $2a - b = 0$			
42.	For which value of m is the line ya) $\frac{1}{2}$ b)c) 2d)	= mx + 1 a tangent to the curve	e y ² = 4x? 1		
13		1	1		
	a) 0 b) c) 1 d)	$\frac{\frac{1}{2}}{\sqrt[3]{\frac{1}{3}}}, 0 \le x \le 1 \text{ is.}$			
44.	In a linear programming problem, and y are $x - 3y \ge 0, y \ge 0, 0 \le x$ a) is not in the first quadrant c) is unbounded in the first quadrant	 the constraints on the decision ≤ 3. The feasible region b) is bounded in the first quadrant d) does not exist 	n variables x 1		
45.	Let A = $\begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{bmatrix}$, where $A = \begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{bmatrix}$, where $A = \begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -\sin \alpha & \sin \alpha & \sin \alpha \end{bmatrix}$, where $A = \begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & \sin \alpha & \sin \alpha \\ -\sin \alpha & \sin \alpha & \sin \alpha \\ -\sin \alpha & \sin \alpha & \sin \alpha &$	here $0 \le \alpha \le 2\pi$, then: b) $ A \epsilon(2, \infty)$ d) $ A \epsilon[2,4]$	1		
The fuel cost per hour for running a train is prop to the square of the speed it generates in km per the fuel costs ₹ 48 per hour at speed 16 km per and the fixed charges to run the train amount to 1200 per hour.					
Assume the speed of the train as $v \text{ km/h}$.					

	Based on the given information, a	answe	er the following questions.		
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:			1	
	a) $\frac{16}{3}$		b) $\frac{1}{3}$		
47.	$\begin{array}{c} c) \ s \\ \hline c) \ s \\ c) \ s \ s \\ c) \ s \\ c) \ s \\ c) \ s \ s \\ c) \ s \ s \\ c) \ s \\ c) \ s \ s \ s \\ c) \ s \ s \ s \ s \\ c) \ s \ s \ s \ s \ s \ s \ s \ s \ s \ $			1	
	a) $\frac{15}{16}v + \frac{600000}{v}$		b) $\frac{375}{4}v + \frac{600000}{v}$		
	c) $\frac{5}{16}v^2 + \frac{150000}{v}$		d) $\frac{3}{16}v + \frac{6000}{v}$		
48.	The most economical speed to run the train is:			1	
	a) 18km/h c) 80km/h	b d) 5km/h) 40km/h	-	
49.	The fuel cost for the train to travel 500km at the most economical speed is:			1	
	a) ₹ 3750 c) ₹ 7500	(d b) ₹750) ₹75000	-	
50.	The total cost of the train to travel 500km at the most economical speed is:			I speed is:	1
	a) ₹ 3750 c) ₹ 7500	b) d)) ₹75000) ₹15000		
				_	
