Downloaded From :http://cbseportal.com/

Marking Scheme Applied Mathematics

Term - I Code-241

Q.N.	Correct option	Hints/Solutions
	-	Section – A
1	С	$5 \odot_8 11 = (5 \times 11) \mod 8 = 55 \mod 8 = 7$
2	а	For distinct $x, y > 0$; $AM > GM \Rightarrow \frac{x+y}{2} > \sqrt{xy} \Rightarrow x + y > 2\sqrt{xy}$
3	С	Let x be the speed of the stream
		$ \therefore 8 + x = 3(8 - x) \Rightarrow 4x = 16 \Rightarrow x = 4 \text{km/h} $
4	d	Since $3 (x+4)$ is true for $x=35$
5	d	$ adj(A) = A ^{n-1} \Rightarrow adj(A) = (-2)^2 = 4$ The summation of product of a_{ij} of 2 nd column with corresponding c_{ij} of 3
6	а	
		column =0
7	С	$ AB = 12 \implies A B = 12$
8		$\Rightarrow -4 A = 12 \Rightarrow A = -3$ If $\Delta = 0$ and at least $(one \ of \ \Delta_x, \ \Delta_y, \ \Delta_z) \neq 0$
0	а	
0		The system of linear equations has no solution $C(x) = x^2 + 30x + 1500$
9	С	$C(x) = x^{2} + 30x + 1500$ $MC = C'(x) = 2x + 30$
		MC = C(x) - 2x + 30 MC when 10 units are produced = $C'(10) = ₹50$
10	С	$y = \frac{1}{r} \Rightarrow \frac{dy}{dr} = -\frac{1}{r^2} < 0 \text{ for } (-\infty, 0) \text{ and } (0, \infty)$
	•	$y = \frac{1}{x} \Rightarrow \frac{1}{dx} = -\frac{1}{x^2} < 0 \text{ for } (-\infty, 0) \text{ and } (0, \infty)$
11	b	dv dv
''	D	$y = x^3 + x \Rightarrow \frac{dy}{dx} = 3x^2 + 1 \Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = 4$
		$\langle cost \rangle \gamma \equiv 1$
12	b	∴ Equation to target is $y - 2 = 4(x - 1) \Rightarrow 4x - y = 2$ Expected number of votes= $np = \frac{70}{100} \times 120000 = 84000$
13	d	The total area under the normal distribution curve above the base line is 1
14	С	$\sum p_i = 1 \Rightarrow 7k = 1 \Rightarrow k = \frac{1}{7}$
		Now, $P(x \ge 3) = 3k = \frac{3}{7}$
15	b	For Poisson distribution
	D	Mean = variance = $np = 20000 \times \frac{1}{10000} = 2$
4.6	لم	
16	d	$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = \text{Total probability} = 1$
17	b	$p = 0.05 = \frac{1}{20}, q = \frac{19}{20}$
		20 20
		$P(x \ge 1) = 1 - P(0) = 1 - 6_{c_0} (\frac{1}{20})^0 (\frac{19}{20})^6 = 1 - (\frac{19}{20})^6$
		20 20 20
18	С	In Laspeyre's price index the weight are taken as base year quantities
19	а	$P_{01}^P = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \frac{506}{451} \times 100 = 112.19$
20	С	Marshall- Edgeworth formula uses the arithmetic mean of the base and
-	-	current year quantities.

Downloaded From :http://cbseportal.com/

		Section –B
21	С	Since Vijay is faster by 4 secs.
		\therefore he beats Samuel by $=\frac{100}{16} \times 4 = 25 \ meters$
22	b	∵ 876 (mod24) = 12
		∴ 8.40 PM will change to 8.40 AM after 12 hours, further after 30 minutes the time
		will be 9.10 AM
23	b	Let total capital be = x & let C's contribution = y , B's contribution = $\frac{x}{2}$, A's
		Contribution = $\frac{x}{3} + y$.
		Now (A+B+C)'s contribution = $x \Rightarrow x = 6y$
		hence their contributions are $2y + y$: $2y$: y i. e., in the ratio 3: 2: 1
24	d	The relation R_m defined as $a \equiv b \pmod{m}$ is reflexive, symmetric and transitive
		∴ R _m is an equivalent relation
25	b	Time ratio = 2 : 3 : 4
		Profit sharing ratio = 6: 7: 8
		Investment ratio = $\frac{6}{2}:\frac{7}{3}:\frac{8}{4} \left(\frac{Profit}{Time}\right)$
		= 9: 7:6
26	С	$2a + b + c - 3d = b + c (\because a = d = 0)$
		$= b + (-b)(\because c = -b)$
07	_1	
27	d	$1 - a_{11}, 1 - a_{22} > 0$ and $ I - A > 0$ and it
		is true only for $\begin{pmatrix} 0.3 & 0.2 \\ 0.1 & 0.5 \end{pmatrix}$
28	С	y = x has a sharp point at $x = 0$
20		y = x has a sharp point at $x = 0y = x $ is continuous but not differentiable at $x = 0$
29	а	$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2a}{2at} = \frac{1}{t} \Longrightarrow \frac{d^2y}{dx^2} = -\frac{1}{t^2} \times \frac{dt}{dx} = -\frac{1}{2at^3}$
30		$\frac{dx}{dx/dt} = \frac{2at}{2at} = \frac{t}{t} = \frac{dx^2}{dx} = \frac{t^2}{dx} = \frac{2at^3}{2at^3}$ $TC = VC + FC = x^2 + 2x + 10000$
30	С	$AC = x + 2 + \frac{10000}{x}$
		λ
		$\frac{d(AC)}{dx} = 1 - \frac{10000}{x^2} = 0 \Longrightarrow x = 100$
31	а	Prize (x_i) p_i $x_i p_i$
		$\frac{1}{10000}$ 50
		$0 \frac{9999}{}$
		So, $\sum x_i p_i = 50$
		Net expected gain = $50 - 100 = -50$
		So gain is -50
32	С	$P(r < 2) = P(0 \text{ or } 1) = 10_{c_0} (\frac{1}{2})^{10} + 10_{c_1} (\frac{1}{2})^{10} = \frac{1+10}{1024} = \frac{11}{1024}$
	_	
20	d	$n = 100, p = \frac{1}{10}, q = \frac{9}{10}$
33		
		$\sigma = \sqrt{npq} = \sqrt{100 \times \frac{1}{10} \times \frac{9}{10}} = 3$
34	а	P(x > 518) = 1 - p(x < 518)
		= 1 - P(z < 1) = 1 - 0.8413
25	b	= 0.1587 $P(x < 54) - P(z < 15)$
35	ט	P(x < 54) = P(z < 1.5) = 0.9332
		= 93.32 %
1	1	

Downloaded From :http://cbseportal.com/

Downloaded From :http://cbseportal.com/

		· irccp.//cbbeportar.com/
36	b	$\frac{\sum P_1}{\sum P_0} \times 100 = \frac{340}{300} = 113.34$
37	b	$P_{01}^F = \sqrt{(P_{01}^L \times P_{01}^P)} = \sqrt{118.4 \times 117.5} = 117.95$
38	С	Since, $L: P = 28: 27$, $\therefore \frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_0 q_1}{\sum p_1 q_1} = \frac{28}{27}$
		$\Rightarrow 9x + 36 = 40 + 8x \Rightarrow x = 4$
39	а	$\frac{\sum \left(\frac{p_1}{p_0}\right)(p_0q_0)}{\sum (p_0q_0)} \times 100$
40	d	$\Sigma(p_0q_0)$ Time reversal Test is satisfied by Fishers ideal index
41	a	C = -5% $d = 10%$ $m = 7%$
		(d-m):(m-c)=1:4
		Quantity sold at 10 % profit = $\frac{4}{5} \times 250 = 200$ Kg
42	d	Portion of cistern filled by both pipes in 1 hour = $\frac{1}{8} + \frac{1}{12} = \frac{5}{24}$.
		Time taken by both pipes to fill the cistern = 4 h 48 mints
		Time taken to fill tank due to leakage = 5 h
		Work done by leakage in 1 $h = \frac{5}{24} - \frac{1}{5} = \frac{1}{120}$
40		Time taken by leakage to empty the tank=120 h
43	а	$TR = px = \frac{75x - x^2}{3}$
		$P = TR - TC = \frac{75x - x^2}{3} - (3x + 100)$
		$\frac{dP}{dx} = 22 - \frac{2}{3}x = 0 \Longrightarrow x = 33$
44	d	$P(X \ge 1) = 1 - P(0) = 1 - \frac{e^{-2}(2)^0}{0!}$
45	С	$= 1 - e^{-2} = 0.8647$ $P (10 < x < 30)$
		= P(-2.5 < Z < 2.5)
		= P(z < 2.5) - P(z < -2.5) = 0.9876
46	b	Since elements of technology matrix a_{ij} , represents units of sector i to
		produce 1 unit of sector <i>j</i>
		$\begin{array}{ll} \therefore \begin{pmatrix} 0.50 & 0.25 \\ 0.10 & 0.25 \end{pmatrix} \text{ is the technology matrix} \end{array}$
47	С	$I - A = \begin{pmatrix} 0.50 & -0.25 \\ -0.10 & 0.75 \end{pmatrix} \Longrightarrow (I - A)^{-1} = \frac{20}{7} \begin{pmatrix} 0.75 & 0.25 \\ 0.1 & 0.5 \end{pmatrix}$
		V=0.10 0.757 V 7 V 0.1 0.57
		$=\frac{1}{7}\binom{15}{2} \qquad \frac{5}{10}$ System is viable if $ I-A >0$ and
48	b	System is viable if $ I - A > 0$ and
		$1 - a_{11} > 0$, $1 - a_{22} > 0$
49	а	$X = (I - A)^{-1}D = \frac{1}{7} {15 \choose 2} {10 \choose 14000} = {25000 \choose 22000}$
50	d	Internal consumption=total production-external demand
	u	internal consumption-total production external demand
		$= \binom{25000}{22000} - \binom{7000}{14000} = \binom{18000}{8000}$

Downloaded From :http://cbseportal.com/