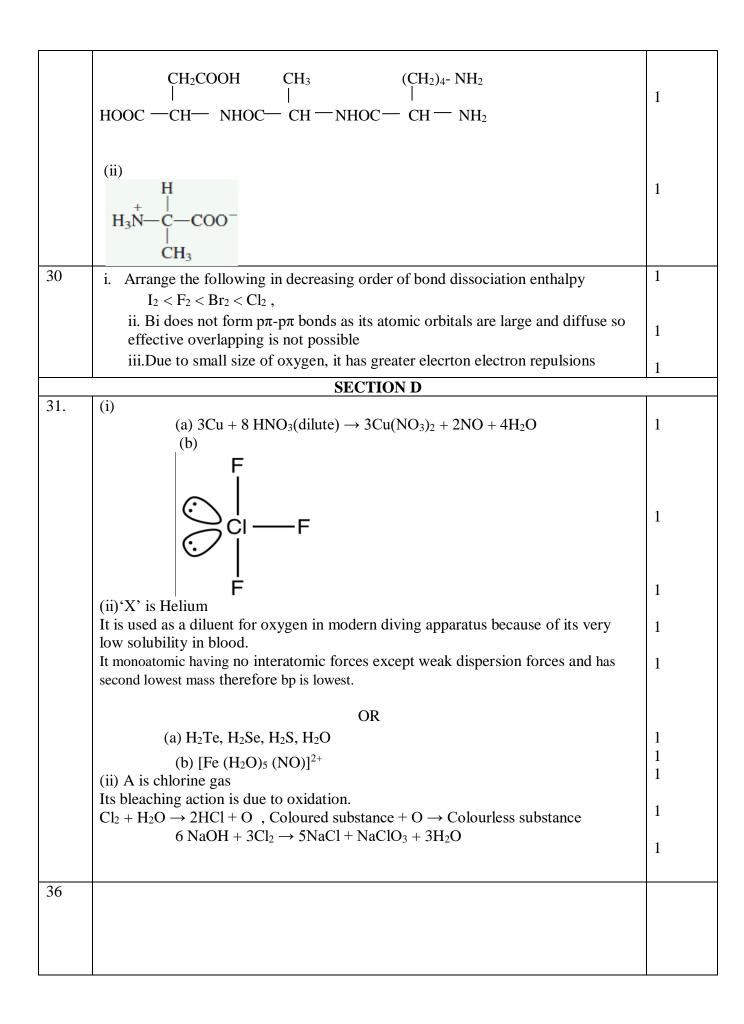
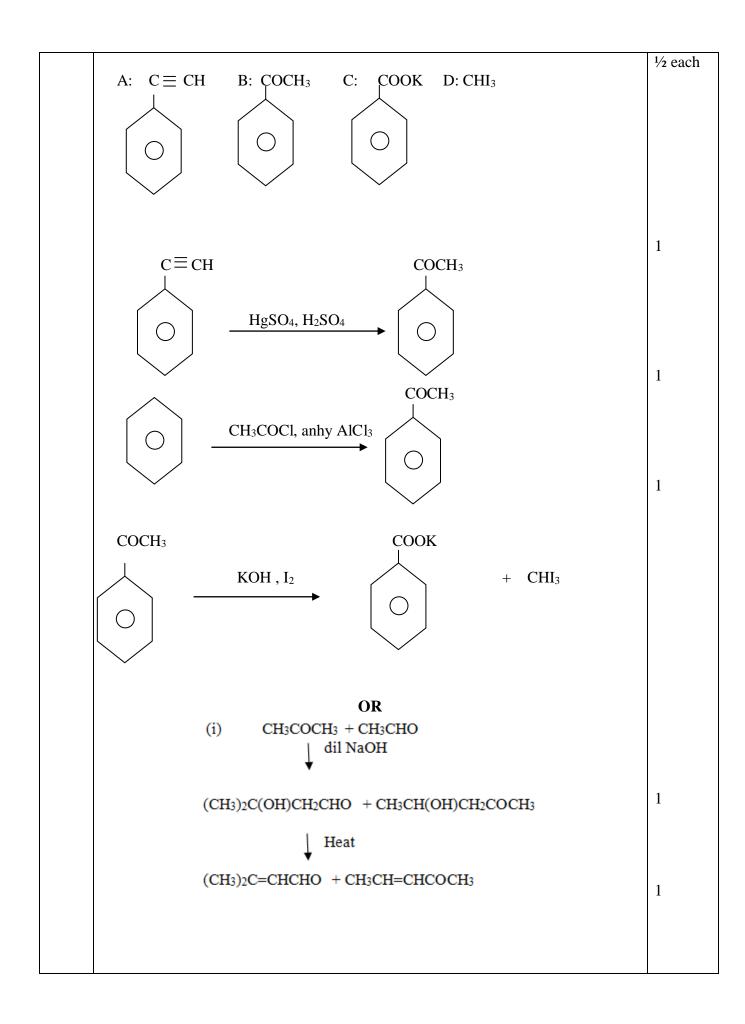

MARKING SCHEME

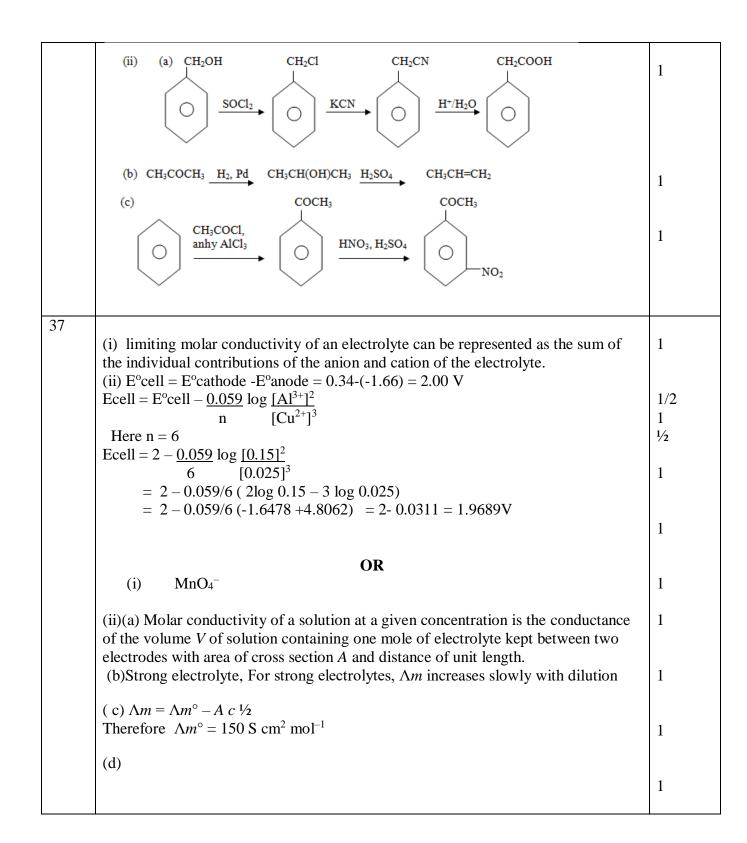
SAMPLE PAPER 1

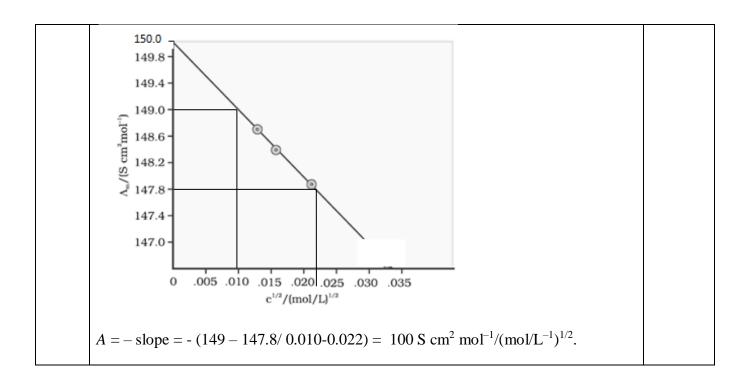
SECTION A

Q.No.	Value Point	Marks
1(i)	D	1
(ii)	B OR A	1
(iii)	В	1
(iv)	С	1
2(i)	В	1
(ii)	А	1
(iii)	А	1
(iv)	A or B	1
3	С	1
4	D or C	1
5	С	1
6	B OR B	1
7	B OR D	1
8	A OR A	1
9	С	1
10	А	1
11	А	1
12	А	1
13	D	1
14	B OR B	1
15	В	1
16	Α	1


SECTION B, C, D




	(i) NH_2 N_2Cl Cl Cl N_2Cl Cu_2Cl_2	1
	(ii) $CH_3CH(Br)CH_3 \xrightarrow{alc KOH} CH_3CH=CH_2 \xrightarrow{HBr, organic peroxide}$ $CH_3CH_2CH_3Br \xrightarrow{alc KOH} CH_3CH=CH_2 \xrightarrow{HBr, organic peroxide}$	1
18	$\begin{split} \Delta Tb &= K_f m \Delta Tb \ = 101.04\text{-}100 = 1.04 \ ^{\circ}\text{C} \\ \text{or } m &= 1.04 \ /0.52 = 2 \\ \text{Relative lowering of VP} &= x2 \\ \text{Relative lowering of VP} &= n2/n1 + n2 \\ &= 2/2 + 55.5 = 2/57.5 = 0.034 \text{ atm} \end{split}$	1 1/2 1/2
19	(i) $t_{2g}^{4}e_{g}^{2}$ Paramagentic (ii)Dichloridobis(ethane-1,2-diamine)cobalt(III)nitrate OR (i)Square planar (ii)Cu ²⁺ = 3d ⁹ 1 unpaired electron so $\sqrt{1(3)} = 1.73BM$	1/2, 1/2 1 1
20	Reaction is a complex reaction. Order of reaction is 1.5. Molecularity cannot be 1.5, it has no meaning for this reaction. The reaction occurs in steps, so it is a complex reaction. (ii)units of k are mol ^{-1/2} L ^{1/2} s ⁻¹ OR Ans : let the rate law expression be Rate = k [P] ^x [Q] ^y from the table we know that Rate 1 = 3.0 x 10 ⁻⁴ = k (0.10) ^x (0.10) ^y Rate 2 = 9.0 x 10 ⁻⁴ = k (0.30) ^x (0.30) ^y Rate 3 = 3.0 x 10 ⁻⁴ = k (0.10) ^x (0.30) ^y	1/2 1/2 1
	Rate 1/ Rate $3 = (1/3)^y$ or $1 = (1/3)^y$ So $y = 0$ Rate 2/ Rate $3 = (3)^x$ or $3 = (3)^x$ So $x = 1$ Rate = k [P]	1/2 1/2 1
21	$k = 0.693/t_{1/2}$ $k = 0.693/5730 \text{ years}^{-1}$ $t = 2.303 \log \frac{Co}{Ct}$ $let Co = 1 \text{ Ct} = 3/10 \text{so Co/Ct} = 1/(3/10) = 10/3$ $t = 2.303 \text{ x} 5730 \log 10$	1/2 1/2 1/2
	$t = \frac{2.303}{0.693} \times 5730 \log \frac{10}{3}$ t = 19042 x (1-0.4771) = 9957 years	¹ /2 1


22	$\begin{array}{c} CH_{3} - CH - CH_{3} & \xrightarrow{H^{+}} CH_{3} - CH_{3} - CH_{3} - CH_{3} \\ & & \\ CH_{3} & OH_{3} \end{array} \xrightarrow{H^{+}} CH_{3} - CH_{3} - CH_{3} \\ \hline \\ CH_{3} & OH_{3} \end{array}$	1⁄2
	$\begin{array}{c} CH_{3} - CH - CH_{2} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} - CH_{2} \xrightarrow{-CH_{2}O} CH_{3} \xrightarrow{-CH_{3}O} CH_{3} CH_{3}$	1⁄2
	$\begin{array}{c} \overbrace{CH_{3}-C-CH_{3}}^{H} \xrightarrow{+}_{CH_{3}} CH_{3} $	1⁄2
	$CH_{3} - CH_{2} - CH_{3} = CH_{3} - C$	1⁄2
23	XeF ₆	1
	. Central atom Xe has 8 valence electrons, it forms 6 bonds with F and has 1 lone pair. According to VSEPR theory, presence of 6 bp and 1 lp results in distorted octahedral geometry	1
24.	(a)inverted product will be given by 1 Chlorobutane as it undergoes ${S_N}^2$ reaction.	1⁄2+1/2
	(b)racemic mixture will be given by 2 chloro-2-methylpropane as it undergoes S_N^1 reaction	¹⁄₂+1/2
25	Let no. of Atoms of element P be x	
	No. of tetrahedral voids = $2x$	1/2
	No. Of octahedral voids = x	
	Atoms of Q = $1/3 (2x) + x = 5x/3$ P _x Q _{5x/3}	1⁄2
	$P_{x}Q_{5x/3}$ $P_{3}Q_{5}$	1
	د <u>א</u> د 1	

	SECTION C	
26		
	(i)Due to large surface area and ability to show variable oxidation states	1
	(ii)Due to high value of third ionisation enthalpy	1
	(iii) Oxidation state of Cr in Cr_2O_3 is +3 and of CrO is +2. When oxidation number	1
	of a metal increases, ionic character decreases so CrO is basic while Cr ₂ O ₃ is	
	amphoteric.	
	OR	
	(i) The general trend towards less negative E V values across the series is	1
	related to the general increase in the sum of the first and second	
	ionisation enthalpies.	
	(ii) The high energy to transform $Cu(s)$ to $Cu2+(aq)$ is not balanced by its	1
	hydration	
	enthalpy.	
	(iii) The stability of the half-filled d sub-shell in Mn ²⁺ and the completely	1
	filled d^{10} configuration in Zn^{2+} are related to their more negative $E^{o}V$	
	values	
27	(i) Aniline, <i>N</i> -ethylethanamine Etanamine	1
	(ii)Ethanamine,ethanol, ethanoic acid	1
	(iii) N, N dimethylmethanamine, methanamine, N-methylmethanamine	1
	OR	
	(i) N-methyletahnamine is a secondary amine. When it reacts with	1
	benzenesulphonyl chloride, it forms N- Ethyl -N methyl sulphonamide while and	
	N,N-dimethyl etahnanmine is a tertiary amine it does not react with	
	benzenesulphonyl chloride.	
	(ii) NO ₂ NH ₂ NH ₂	
	HAVI Broth O Br	1
	\bigcirc $\xrightarrow{H_2/N_1}$ \bigcirc $\xrightarrow{Br_2/H_2O}$ \bigcirc	1
	Br Br	1/2
	(iii)Butan-1-ol	12
	Alcohol forms stronger hydrogen bonds with water than formed by amine due to	1/2
	higher electronegativity of O in alcohol than N in amine	/2
28	We know that $d = zM/N_a a^3$	1/2
-	For fcc, z=4 therefore d = $4 \times M / Na (3.5 \times 10^{-8})^3 \text{ g/cm}^3$	
	For bcc, z=2 therefore d' = $2 \times M / Na (3.0 \times 10^{-8})^3 \text{ g/cm}^3$	1
	$d/d^2 = 4/(3.5 \times 10^{-8})^3 / 2/(3.0 \times 10^{-8})^3 = 3.17:1$	1/2
29	(i)	
-	CH_3 CH_2 -COOH $(CH_2)_4$ - NH_2	1
		1

