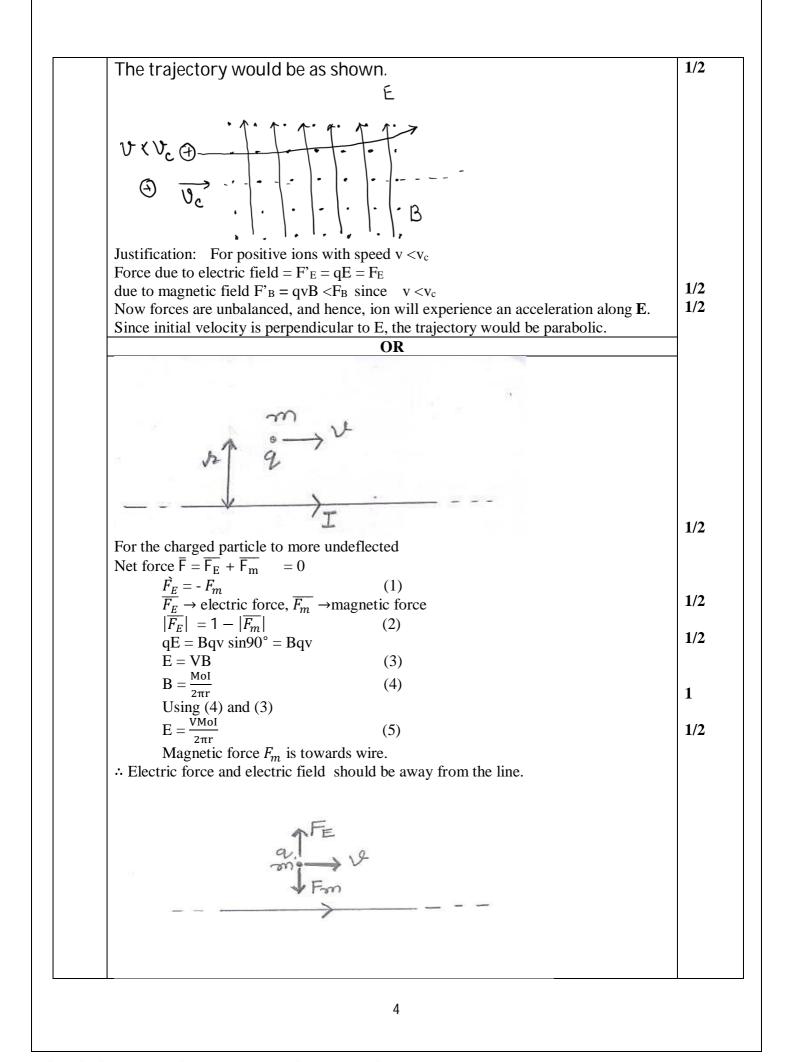
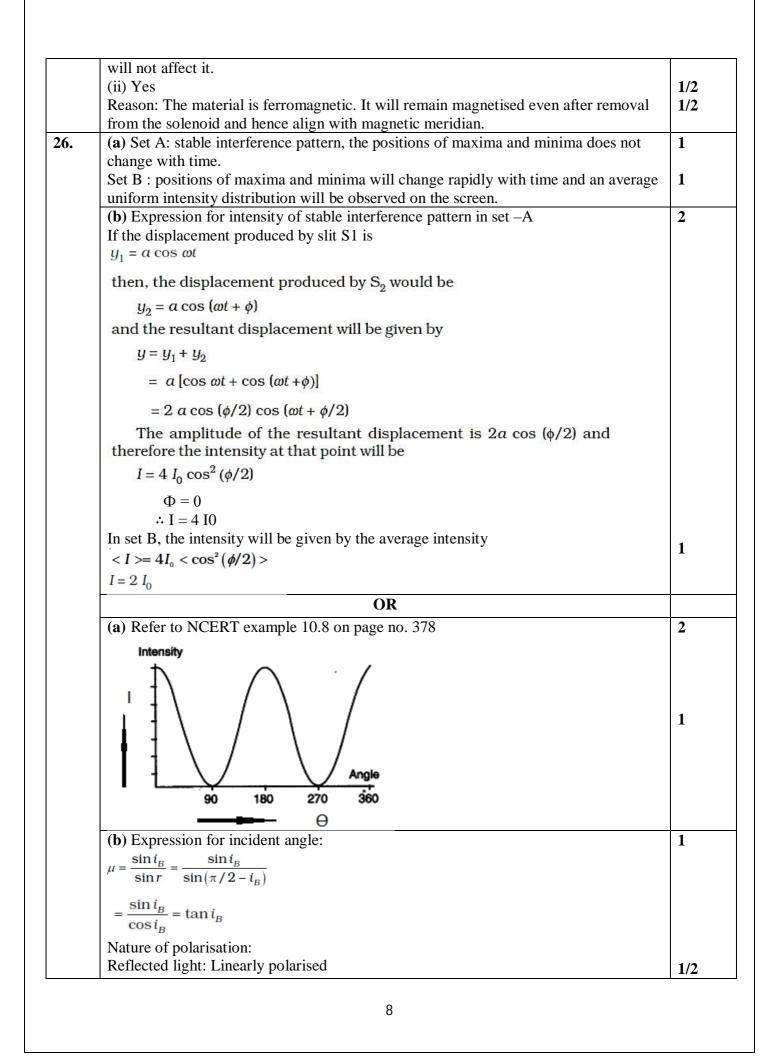
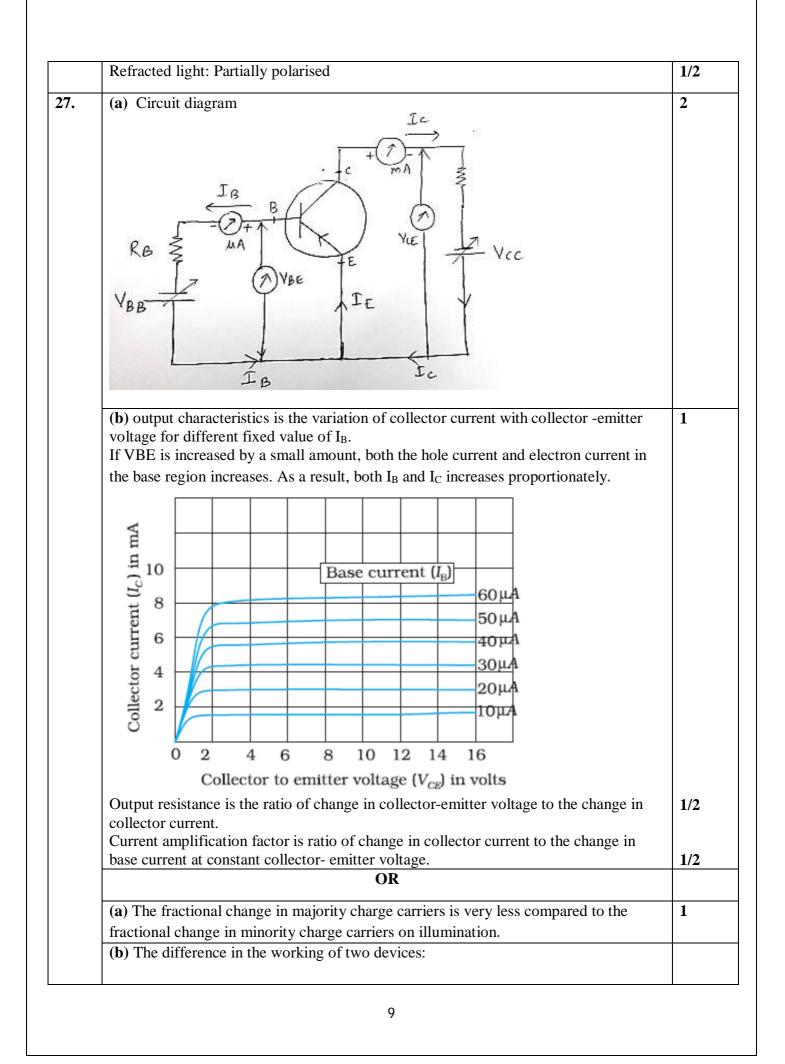

Class: XII Physics (042) Marking Scheme 2018-19

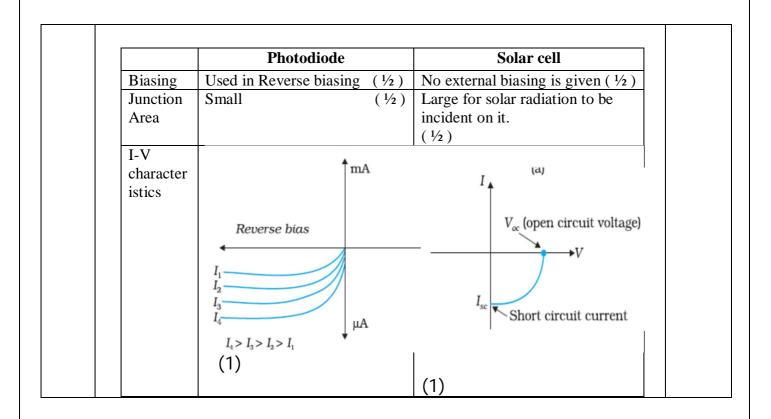

Time allowed: 3 hours

Maximum Marks: 70

Q No	SECTION A	Marks
1.	C/m ²	1
2.	Fractional change in resistivity per unit change in temperature.	1
3.	X-rays	1
	OR	
	Displacement current	1
4.	From the graph $\tan \Theta = \frac{\sin r}{\sin i}$	1/2
	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$	
	$\frac{\sin r - v_2}{\frac{v_1}{2}} = \cot\theta$	1/2
	v_2	
5.	$\mathbf{P}_1 = \mathbf{P}_2$	1/2
	Ratio $\lambda 1/\lambda 2 = 1:1$	1/2
	OR	1/2
	Each photon has an energy , $E=h.v$ = (6.63 ×10 ⁻³⁴ J s) (6.0 ×10 ¹⁴ Hz)	1/2
	$= (0.03 \times 10^{-19} \text{ J}^{\circ})(0.0 \times 10^{-112})$ $= 3.98 \times 10^{-19} \text{ J}^{\circ}$	11 -
	SECTION B	
5.	Equivalent Resistance = $R1.R2/(R1+R2) + R3 + R4.R5/(R4+R5)$	1
	$= [(4 \times 4)/(4 + 4)] + 1 + [(12 \times 6)/(12 + 6)] \Omega$	1/2
	= 7 Ω.	1/2
	OR	
	$r = \frac{\mathcal{E} - V}{L}$	
	r =	1
	= 9V - 8V	
	<u>5 A</u>	1/2
	= 0.2 Ω	1/2
	1	


	$2 \lambda'/d = 0.70 X (2 \lambda/d)$	
	∴λ′= 4200 Å	
		1/2
11.	Universal gates (like the NAND and the NOR gates) are gates that can be	1
	appropriately combined to realize all the three basic gates.	
	$A \longrightarrow \overline{A}$	
))o• Y	
	B B	1
		1
12.	Range d = $\sqrt{2hR} + \sqrt{2h_RR}$	1
	d = 33.9 km	1
	SECTION: C	
	SECTION. C	
13.	From energy conservation, $U_i + K_i = U_f + K_f$	
10.	$kQq/r_i + 0 = kQq/r_f + K_f$	1/2
	$K_{f} = kQq (1/r_{i} - 1/r_{f})$	1/2
	When Q is +15 μ C, q will move 15 cm away from it. Hence r _f = 45 cm	
	$K_f = 9 \times 10^9 \times 15 \times 10^{-6} \times 5 \times 10^{-6} [1/(30 \times 10^{-2}) - 1/(45 \times 10^{-2})]$	1/2
	= 0.75 J	1/2
	When Q is -15 μ C, q will move 15 cm towards it. Hence r _f = 15 cm	
	$K_f = 9x 10^9 x (-15 x 10^{-6}) x 5 x 10^{-6} [1/(30 x 10^{-2}) - 1/(15 x 10^{-2})]$	1/2
	= 2.25 J	1/2
14.	(a) p ₁ : stable equilibrium	1/2
	p ₂ : unstable equilibrium	
	The electric field, on either side, is directed towards the negatively charged sheet and	1/2+1/2
	its magnitude is independent of the distance of the field point from the sheet. For	
	position p_1 , dipole moment and electric field are parallel. For position p_2 , they are	
	antiparallel.	
	(b) The dipole will not be in equilibrium in any of the two positions.	1/2
	The electric field due to an infinite straight charged wire is non- uniform (E α 1/r).	1/2
1 -	Hence there will be a net non-zero force on the dipole in each case.	1/2
15.	(a) Drift speed in B (n-type semiconductor) is higher	1/2
16	Reason: $I = neAv_d$ is same for both	1/2
	n is much lower in semiconductors.	1/2
	(b) Voltage drop across A will increase as the resistance of A increases	1/2+1/2
	with increase in temperature.	
	Voltage drop across B will decrease as resistance of B will decrease with	1/2+1/2
	increase in temperature.	
16.	$\mathbf{E} = \mathbf{E} \mathbf{j}$ and $\mathbf{B} = \mathbf{B} \mathbf{k}$	1/2
	Force on positive ion due to electric field $\mathbf{F}_{\mathbf{E}} = q\mathbf{E}\mathbf{j}$	1/2
	Force due to magnetic field $\mathbf{F}_{\mathbf{B}} = \mathbf{q} (\mathbf{v}_{\mathbf{c}} \times \mathbf{B})$	1/2
	For passing undeflected, $\mathbf{F}_{\mathbf{E}} = -\mathbf{F}_{\mathbf{B}}$	
	$qE\mathbf{j} = -q (\mathbf{v}_{\mathbf{c}} \times B\mathbf{k})$ This is possible only if $q\mathbf{v}_{\mathbf{c}} \times B\mathbf{k} = qv_{\mathbf{c}}B\mathbf{j}$	
	$\begin{array}{l} \text{This is possible only if } q\mathbf{v}_{c} \times \mathbf{B}\mathbf{K} = q\mathbf{v}_{c}\mathbf{B}\mathbf{J} \\ \text{or } \mathbf{v}_{c} = (\mathbf{E}/\mathbf{B})\mathbf{i} \end{array}$	1/2
	$\nabla \mathbf{I} \mathbf{v}_{\mathbf{C}} = (\mathbf{L}/\mathbf{D})\mathbf{I}$	1/4




7.	$I_0 = V_0/R = 10/10 = 1 A$	1/2
	$\omega_{\rm r} = 1/\sqrt{LC} = 1/\sqrt{(1 \times 1 \times 10^{-6})} = 10^3 \text{ rad/s}$ $V_0 = I_0 X_{\rm L} = I_0 \omega_{\rm r} L$	1/2 1/2
	$= 1 \times 10^3 \times 1 = 10^3 \text{ V}$	1/2
	$Q = \omega_r L/R$	1/2
	$=(10^3 \text{ x } 1)/10 = 100$	1/2
8.	a) Principle of transformer	1
	b) Laminations are thin, making the resistance higher. Eddy currents are confined within each thin lamination. This reduces the net eddy current.	1
	c) For maximum sharing of magnetic flux and magnetic flux per turn to be the same	1
	in both primary and secondary.	
	OR	
	At an instant <i>t</i> , charge <i>q</i> on the capacitor and the current <i>i</i> are given by: $q(t) = q_0 \cos \omega t$	
	$i(t) = -q_0 \omega \sin \omega t$ Energy stored in the capacitor at time <i>t</i> is	
	$U_{E} = \frac{1}{2} C V^{2} = \frac{1}{2} \frac{q^{2}}{C} = \frac{q_{0}^{2}}{2C} \cos^{2}(\omega t)$	1
	Energy stored in the inductor at time t is	
	$U_M = \frac{1}{2} L i^2$	
	$=\frac{1}{2}L q_0^2 \omega^2 \sin^2(\omega t)$	
	$=\frac{q_0^2}{2C}\sin^2(\omega t) \left(::\omega=1/\sqrt{LC}\right)$	1
	Sum of energies q_{2}^{2} (2 2 2	
	$U_E + U_M = \frac{q_0^2}{2C} \left(\cos^2 \omega t + \sin^2 \omega t \right)$	
	$=\frac{q_0^2}{2C}$	
	This sum is constant in time as q_0 and C , both are time-independent.	
		1
	Ray diagram: (2)	

	Drawbacks:	1/2
	(i)Large sized lenses are heavy and difficult to support	1/2
	(ii) large sized lenses suffer from chromatic and spherical aberration.	
	OR	1
	(a) Resolving power of a telescope is the reciprocal of the smallest angular separation	1/2.1/2
	between the two objects which can be just distinctly seen. Factors: diameter of the objective, wavelength of the incident light	1/2+1/2
	(b) a telescope produces image of far objects nearer to our eye. Objects which are not	1
	resolved at far distance, can be resolved by telescope. A microscope, on the other hand magnifies objects nearer to us and produces their large image.	
20.	Let d be the diameter of the disc. The spot shall be invisible if the incident rays from	
	the dot at O, at the center of the disc, are incident at the critical angle of incidence	1
	Let i be the critical angle of incidence. Then Sin $i = \frac{1}{\mu}$	1/2
		1/2
	Now, $\frac{d/2}{h} = \tan i$	1/2
	$\Rightarrow \frac{d}{2} = h \tan i = h \left[\sqrt{\mu^2 - 1} \right]^{-1}$	
	$= \frac{1}{2} - \frac{1}{2} \ln \left[\sqrt{\mu} - 1 \right]$	1/2
	$\therefore d = \frac{2\pi}{\sqrt{\mu^2 - 1}}$	1/2
21.	(a) No, it is not necessary that if the energy supplied to an electron is more than the	1
	work function, it will come out.	
	The electron after receiving energy, may lose energy to the metal due to collisions	
	with the atoms of the metal. Therefore, most electrons get scattered into the metal.	
	Only a few electrons near the surface may come out of the surface of the metal for	
	whom the incident energy is greater than the work function of the metal.	1
	(b) on reducing the distance, intensity increases.	1/2
	Photoelectric current increases with the increase in intensity.	1/2
22.	Stopping potential is independent of intensity, and therefore remains unchanged.Energy corresponding to the given wavelength:	1/2
44.		
	E (in eV) = $\frac{12400}{\lambda (in Å)}$ = 12. 71 eV	1
	The excited state:	-
	$E_n - E_1 = 12.71$	
	$\frac{-13.6}{n^2} + 13.6 = 12.71$	1/2
	$\therefore n = 3.9 \approx 4$	1/2
	n(n, 1)	1/2
	Total no. of spectral lines emitted: $\frac{n(n-1)}{2} = 6$	1/2

	n = 4 to $n = 3$	1/2
23.	(a) S,W,X	1
	(b) $Z = Z1 + Z2$	
	A = A1 + A2	1/2
	(c) Reason for low binding energy:-	1/2
	In heavier nuclei, the Coulombian repulsive effects can increase considerably and can	1
	match/ offset the attractive effects of the nuclear forces. This can result in such nuclei	1
	being unstable.	
	OR	
	Nuclear force binds the protons inside the nucleus.	1/2
	For Graph and explanation, refer to NCERT page no 445	2
	Significance of negative potential energy: Force is attractive in nature	1/2
24.	The modulated signal:	
	$C_{m}(t) = (A_{c} + A_{m} \sin \omega_{m} t) \sin \omega_{c} t$	1/2
	$= A_{c} \left(1 + \frac{A_{m}}{A_{c}} \sin \omega_{m} t \right) \sin \omega_{c} t$	1/2
	$C_{m}(t) = A_{c} \sin \omega_{c} t + \mu A_{c} \sin \omega_{m} t \sin \omega_{c} t$	1/2
	$C_{\rm m}(t) = A_{\rm c} \sin\omega_{\rm c} t + \frac{\mu A_{\rm c}}{2} \cos(\omega_{\rm c} - \omega_{\rm m}) t - \frac{\mu A_{\rm c}}{2} \cos(\omega_{\rm c} + \omega_{\rm m}) t$	1/2
	Frequency Spectrum :-	1/2
	Amplitude $\frac{A_e}{\mu A_z}$	1
	$\frac{\mu A_i}{2}$	
	$(\omega_c - \omega_m) \omega_c (\omega_c + \omega_m) \qquad \omega \text{ in radians}$	
	SECTION: D	
25.	(a) The equivalent magnetic moment is given by $\mu = NiA$	1/2
	The direction of μ is perpendicular to the plane of current carrying loop. It is directed	1/2
	along the direction of advance of a right-handed screw rotated along the direction of	
	flow of current	2
	derivation of expression for μ of electron revolving around a nucleus	2
	(b) for the loop, $\mu = N (\pi r^2) i (\pm k)$	1/2
	Magnetic potential energy = μ .B = N (σ r ²) i (+lr) ($-$ P i + P lr)	1/2
	$= N (\pi r^2) i (\pm \mathbf{k}). (B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k})$ = $\pm \pi r^2 N I B_z$	1/2 1/2
	OR	1/4
	(a) Derivation	2.5
	H = nI	1/2
	The direction of \mathbf{H} is along the axis of the solenoid, directed along the direction	
	of advance of a right-handed screw rotated along the direction of flow of current	
	(b) (i) Not necessarily.	1/2
	Reason: material is diamagnetic. After removal of magnetising field, no magnetisation will remain in the material and hence earth's magnetic field	1/2
